ПОИСК Статьи Чертежи Таблицы Плавление и перенос электродного металла при дуговой сварке из "Технология электрической сварки металлов и сплавов плавлением " Характер плавления и переноса электродного металла оказывает большое влияние на производительность сварки, взаимодействие металла со шлаком и газами от него зависят устойчивость горения дуги, потери металла, формирование шва и другие технологические факторы. [c.68] Плавление электрода. Плавление электрода происходит главным образом за счет тепловой энергии дуги. Основной характеристикой плавления электрода являются линейная или массовая скорости плавления, измеряемые длиной или массой расплавленного электрода (проволоки) в единицу времени. Скорость плавления зависит от состава сварочной проволоки, покрытия, флюса, защитного газа, режима сварки, плотности и полярности тока, вылета электрода и ряда других факторов. Но и для одних и тех же условий сварки скорость плавления электрода не остается постоянной, а может постепенно изменяться. Поэтому на практике используют в качестве характеристики среднюю скорость плавления электрода, которая обычно определяется за некоторый произвольный, но значительно превосходящий длительность периода капельного перехода промежуток времени. [c.68] Выражение (2-14) справедливо лишь для электродов, не содержащих металлических присадок (железного порошка или ферросплавов) в покрытии. [c.69] С помощью рассмотренных показателей можно определить такие характеристики, как выход наплавленного металла и выход годного металла k . [c.69] Для электродов с металлическими присадками в покрытии этот показатель может быть значительно больше единицы (или больше 100%). [c.69] Скорость плавления электрода в основном определяется условиями выделения и передачи теплоты в анодной и катодной областях и зависит от полярности тока. При сварке на обратной полярности коэффициент расплавления практически не зависит от состава проволоки, покрытия, флюса или защитного газа. При сварке же на прямой полярности коэффициент расплавления изменяется в широких пределах в зависимости от состава и состояния поверхности проволоки, составов покрытия, флюса или защитного газа (рис. 2-24). Соответственно изменяется и напряжение дуги. В практике обычно пользуются значением номинального напряжения дуги /д — напряжения, характерного для данной марки электрода, проволоки, флюса или защитного газа при рабочей длине дуги. [c.70] Введение в проволоку, покрытие или флюс веществ, повышающих катодное падение напряжения (а следовательно, и номинальное напряжение дуги), способствует повышению скорости плавления проволоки на прямой полярности. Изменение состава защитного газа оказывает сравнительно небольшое влияние на скорость плавления проволоки. Нанесение на сварочную проволоку небольших количеств солей щелочных или щелочноземельных металлов резко понижает скорость плавления катода. Это явление иногда используется для так называемого активирования проволоки с целью замедления скорости плавления и получения мелкокапельного переноса металла на прямой полярности. [c.71] При сварке покрытыми электродами скорость плавления электрода зависит и от толщины покрытия. Утолщение покрытия приводит к дополнительным затратам теплоты на его плавление, а также к увеличению мощности, выделяемой в столбе дуги. У электродов без металлических добавок в покрытии увеличение толщины покрытия ведет к бесполезным затратам на его плавление. Вводя в покрытие металлические добавки или железный порошок, можно существенно увеличить скорость наплавки. Увеличение толщины покрытия и повышение содержания в нем железного порошка позволяют значительно повысить плотность тока без опасения перегрева стержня электрода. Все эти факторы способствуют увеличению производительности сварки. [c.71] Основные показатели переноса электродного металла. При плавлении на торце электрода образуется капля жидкого металла. Большая удельная поверхность и высокие температуры капель при дуговой сварке плавлением способствуют интенсивному взаимодействию металла с окружающей средой. Поэтому характер переноса электродного металла оказывает значительное влияние на кинетику процессов взаимодействия металла со шлаком и газами. [c.71] Данные о характере плавления и переноса электродного металла при сварке плавящимся электродом в атмосфере защитных газов получают с помощью скоростной киносъемки, а при сварке толстопокрытыми электродами и под флюсом — с помощью скоростной рентгеновской киносъемки. [c.72] действующие на каплю. Характер переноса электродного металла зависит от соотношения сил, действующих на каплю металла на торце электрода. Основные из них сила тяжести, сила поверхностного натяжения, электромагнитная сила, электростатическая сила, сила реактивного давления паров и нейтрализовавшихся на катоде ионов, аэродинамическая сила. Величины отдельных сил и направление их равнодействующей зависят от режима сварки, полярности тока, состава электродного металла и газовой среды, состояния поверхности проволоки и ее диаметра. [c.72] Общепризнано, что сила тяжести оказывает существенное влияние на перенос металла лишь при сварке на малых токах. Роль силы тяжести в переносе электродного металла зависит от положения электрода в пространстве. При сварке в нижнем положении она способствует переходу капли в ванну, а в потолочном положении — удержанию ее на торце электрода. [c.72] По мере увеличения размеров капли сила поверхностного натяжения уменьшается. [c.72] Величина поверхностного натяжения жидкого металла зависит от его химического состава и температуры. Наличие небольших количеств поверхностно-активных веществ может привести к значительному снижению поверхностного натяжения. Наибольшей поверхностной активностью в жидкой стали обладают кислород и сера. Поэтому различные технологические факторы, оказывающие влияние на содержание этих примесей в металле (степень раскисленности металла, состав шлака и др.), оказывают воздействие на характер переноса металла. Увеличение температуры капель приводит к снижению поверхностного натяжения сплавов на основе железа и может способствовать уменьшению размера переносимых капель. [c.73] Значительное влияние на перенос металла оказывает электромагнитная сила. Она обусловлена взаимодействием проводника с током и магнитного поля, создаваемого этим током. При протекании тока через проводник, каковыми являются капля жидкого металла и столб дуги, возникают силы, которые стремятся деформировать проводник в радиальном направлении. Величина силы сжатия пропорциональна квадрату силы тока. Если сечение проводника переменное (в случае сварки плавящимся электродом, включающее электрод—каплю—активное пятно—столб дуги), то возникает осевая составляющая электромагнитной силы, направленная от меньшего сечения к большему. Если размеры активного пятна меньше, чем диаметр электрода (шейки), то осевая сила будет препятствовать переносу, и наоборот (рис. 2-25). [c.73] Одной из важных сил, оказывающих влияние на характер переноса металла, является реактивное давление паров. Испарение металла с поверхности капли и химическое взаимодействие жидкого металла со шлаком или газовой фазой, вызывающее образование и выделение газа, приводят к возникновению реактивных сил. Испарение металла происходит главным образом в области активных пятен. Считают, что равнодействующая реактивных сил приложена к центру активного пятна. Перемещение пятен вызывает изменение положения места приложения реактивных сил и значительную подвижность капель. [c.74] Поскольку плотность тока в катодном пятне значительно выше, чем в анодном, влияние реактивного давления в большей мере проявляется на прямой полярности. Сжатие дуги приводит к увеличению плотности тока в пятнах, что вызывает повышение реактивного давления паров. [c.74] В металлах с высоким давлением паров (магний, цинк, кадмий) отталкивание капель реактивными силами наблюдается на обеих полярностях, а в металлах с низким давлением паров — главным образом на прямой полярности. [c.74] При сварке на прямой полярности реактивное давление ионов, нейтрализующихся на поверхности катода, может оказывать некоторое влияние на характер переноса металла. [c.74] В зависимости от соотношения сил, действующих на каплю, характер переноса электродного металла может существенно изменяться. Рассмотрим особенности переноса электродного металла при различных способах дуговой сварки. [c.75] Вернуться к основной статье