ПОИСК Статьи Чертежи Таблицы Испытания на ползучесть и кривые ползучести из "Механика деформируемого твердого тела " Четко выраженная практическая направленность характеризует развитие теории ползучести в последующие годы, вплоть до настоящего времени. В 50-е — 60-е годы эта теория сформировалась как самостоятельная ветвь механики сплошной среды в это время был накоплен очень большой экспериментальный материал, Были поставлены опыты специально для проверки и уточнения основных гипотез теории, с одной стороны. С другой — в промышленности был выполнен огромный объем экспериментов, направленных на О получение данных по ползучести отдельных сплавов, предназначен-ных для применения их в конструкциях. Не доставляя достаточно полного материала для проверки математической теории ползучести, эти результаты все же смогли быть использованы теоретиками. Особый интерес представляют эксперименты, выполненные на моделях более или менее сложных изделий — трубах, дисках, диафрагмах турбин и т. д. Сравнение данных опыта с предсказаниями расчета, построенного на основе той или иной теории, могло служить качественным подтверждением ее правильности. [c.613] Стандартный метод испытаний на ползучесть — это испытание на растяжение постоянной нагрузкой цилиндрического образца. Современные жаропрочные сплавы разрушаются под действием постоянной нагрузки при относительно малой деформации, поэтому деформации ползучести, измеряемые в эксперименте, невелики. С другой стороны, конструктор не может допустить сколько-нибудь большие деформации ползучести (обычно не свыше 1%), поэтому изучение ползучести представляет интерес только в пределах изменения деформации не свыше 1—2%. При этом изменение площади поперечного сечения невелико и постоянство нагрузки можно отождествлять с постоянством деформации. В старых работах принимались специальные меры для того, чтобы компенсировать уменьшение площади сечения при растяжении соответствующим уменьшением нагрузки для этого создавались специальные конструкции нагружающих устройств. В современной испытательной технике эти меры не принимаются. [c.613] СТОК Кривой ползучести, скорость ползучести de/dt постепенно убывает до минимального значения v a). На участке // скорость ползучести сохраняет постоянное значение de/dt ==v o). На третьем участке скорость начинает возрастать и ползучесть заканчивается обрывом образца. [c.614] Приведенная диаграмма представляет собою схему. В действительности картина ползучести может быть самой разнообразной. Может отсутствовать первый участок, после непродолжительного периода ползучести с относительно постоянной скоростью она начинает увеличиваться, таким образом, вся диаграмма состоит из третьего участка. Участок II часто бывает трудно выделить, это может быть просто некоторая область около точки перегиба, отделяющей участки I и III. Наконец, при низком уровне напряжений даже при очень длительных испытаниях не будет достигнута минимальная скорость и не произойдет разрыва образца, вся диаграмма ползучести будет состоять из одного первого участка. Именно такой результат был получен в опытах Робинсона, продолжавшихся 100 000 часов (около 12 лет). [c.614] Иногда кривые ползучести выглядят и более сложным образом, периоды замедления и ускорения чередуются не так, как это показано на идеальной диаграмме рис. 18.1.1. Как правило, такое поведение свидетельствует о фазовых переходах в сплаве. Теория, которая будет излагаться ниже, применима к материалам структурно устойчивым, и в принципе фазовые переходы исключаются из рассмотрения. [c.614] Уменьшение скорости деформации на первом участке кривой ползучести определяется эффектом упрочнения ползучесть сопровождается такими структурными изменениями, которые увеличивают сопротивление материала ползучести. При исчерпании способности материала к упрочнению скорость ползучести становится постоянной, кривая ползучести выходит на второй участок. [c.614] Если деформации ползучести велики и, следовательно, изменение площади сечения образца значительно, при постоянной нагрузке напряжение будет возрастать и, следовательно, скорость будет увеличиваться. Таким образом, на диаграмме появится третий участок. Для некоторых материалов такое чисто геометрическое объяснение появления третьего участка оказывается точным. Однако третьи участки наблюдаются на кривых ползучести жаропрочных материалов, которые разрушаются при очень малом удлинеш1и. Причина этого состоит в том, что ползучесть сопровождается образованием микротрещин и микрополостей на границах кристаллических зерен. В результате эффективная площадь сечения, воспринимающая нагрузку, уменьшается и скорость ползучести увеличивается. С увеличением скорости ползучести увеличивается скорость образования новых микротрещин и роста уже имеющихся наконец в каком-то месте образца микротрещины сливаются, образуя большую трещину разрушения. [c.614] Вернуться к основной статье