ПОИСК Статьи Чертежи Таблицы Предисловие ко второму изданию из "Механика деформируемого твердого тела " В современной монографической и учебной литературе насчитывается уже значительное количество книг по механике сплошных сред, что с избытком покрывает требования программ соответствующих общих курсов университетов. В то же время имелся большой дефицит книг, специально посвященных общей теории деформируемого твердого тела, крайне необходимых для подготовки специалистов на университетских кафедрах соответствующего цикла, аспирантов по специальности 01.02.04 и т, д. Появление книги Ю. Н. Работнова по существу ликвидировало этот дефицит, она в полной мере отвечает суммарным программам спецкурсов по указанным специальностям. [c.9] Без преувеличения можно сказать, что книга Ю, Н. Работнова к настоящему времени является лучшей среди подобных ей книг как у нас в стране, так и за рубежом. Впервые с единых позиций в ней дается изложение основ всех главных разделов механики деформируемого твердого тела. Книгу отличает компактность изложения, достигаемая за счет широкого применения таких эффективных методов исследования, как вариационные принципы, тензорные исчисления, теория функций комплексного переменного, интегральные преобразования и т. д. Этому также способствует и оригинальная трактовка теории напряжений. Естественно, что, представляя проблему во всем ее многообразии (стержни, пластинки, оболочки, пространственные тела, упругость, пластичность, ползучесть, наследственность, устойчивость, колебания, распространение волн, длительная прочность, разрушение), автор сконцентрировал внимание на принципиальных вопросах. Тем не менее книга снабжена достаточно большим количеством примеров расчета, для того чтобы читатель мог составить представление о практических возможностях теории. [c.9] Во многом материал книги основан на оригинальных исследованиях автора — одного из выдающихся механиков современности. Широкая популярность недавно ушедшего от нас автора и отмеченные выше достоинства книги привели к тому, что по истечении короткого времени после выхода в свет книга стала библиографической редкостью. Нисколько не потеряв в актуальности, она потребовала скорейшего переиздания. Настоящее второе издание с несущественными изменениями повторяет первое. [c.9] Содержание предлагаемой читателю книги состоит из глав, материал которых практически весь излагался автором в лекциях на механико-математическом факультете МГУ и в других университетах. Она разбита на три части. Первая из них написана на вполне элементарном уровне. На примере простейших стержневых систем автор стремился изложить основные идеи общей теории упругих и пластических сред. Вторая часть посвящена теории упругости и ее приложениям. Наконец третья, последняя часть относится к проявлениям неупругости — теории пластичности, ползучести, механике разрушения. [c.10] Советы В. В. Болотина заставили автора во многих местах существенно переделать первоначальный текст и, как он полагает, значительно его улучшить. [c.10] Предлагаемая читателю книга предназначена быть учебным пособием по дисциплине, название которой служит ее заглавием. В технических учебных заведениях преподаются различные предметы, составляющие части механики деформируемого тела. Это — сопротивление материалов (содержание курса не соответствует его названию), теория упругости, теория пластичности и ряд других разделов науки, которые иногда подаются в виде дополнительных курсов, а иногда вообще опускаются. Но в науке, как и в практической жизни, происходит процесс переоценки ценностей. Элементарный курс сопротивления материалов уже не удовлетворяет современного инженера, во втузах иногда даются небольшие курсы теории упругости и даже теории пластичности. Следует заметить, что в этих курсах изложение носит нарочито элементарный характер. Даже средняя школа стремится сейчас приучить ученика к настоящему математическому языку и более или менее абстрактным представлениям, свойственным современной математике. Курсы высшей математики в технической школе также существенно приблизились к уровню науки сегодняшнего дня. Поэтому чрезмерное упрощение манеры изложения кажется автору неоправданным. Однако в этой книге автор старался не выходить за пределы обычного втузовского курса математики, кроме отдельных параграфов, которые в принципе могут быть опущены при изучении. Сейчас нет серьезных оснований проводить резкую границу между университетским и втузовским преподаванием, в высшей технической школе существуют факультеты и специальности, на которых объем сообщаемых сведений по математике достаточен для понимания всей книги. В то же время при написании ее автор имел в виду программы механико-математи-ческих факультетов университетов весь материал, содержащийся в университетских программах по сопротивлению материалов, теории упругости и теории пластичности в книге содержится. Поэтому автор надеется, что книга может послужить учебником для университетов и учебником либо учебным пособием для учащихся некоторых специальностей технической школы. [c.11] На русском языке имеются много числевные монографии, в которых рассмотренные здесь вопросы изложены более полно и детально, некоторые ссылки на такие монографии приводятся в тексте, только их названия содержатся в небольшом прилагаемом списке литературы. Остальные упоминания о различных результатах отдельных ученых библиографическими ссылками не сопровождаются. [c.12] Следующий концентр связан с теорией упругости. В гл. 7 сообщаются элементы тензорного анализа в виде сводки основных фактов и определений. Автору представляется, что для практических целей достаточно (и вполне строго) вести изложение общих теорем в прямоугольной декартовой системе координат. В 7.8, где идет речь о криволинейных координатах, говорится о задании тензора в произвольном базисе, но эта теория дальнейшего развития не находит. Что касается тензорного языка, который применен в гл. 7 и последующих главах, он совершенно элементарен. Для университетов он привычен и упрощен по сравнению с тем, что дается, скажем, в курсе дифференциальной геометрии. Для студента втуза привыкнуть к этому языку очень нетрудно. Автор вспоминает, как в начале тридцатых годов среди преподавателей теоретической механики шли ожесточенные споры о том, следует ли излагать механику векторно или же в координатах. Любопытно отметить, что акад. А. Н. Крылов был яростным и убежденным противником векторной символики, которая вводилась Московской школой. Автор получил воспитание в этой школе, поэтому он особенно рад торжеству векторного изложения теоретической механики и надеется, что в учебной литературе но механике твердого тела тензорный язык будет применяться широко и на всех уровнях. [c.13] После этого раздела следуют гл. 8—11, относящиеся к классической теории упругости. После некоторых колебаний автор решил все же включить сюда раздел, относящийся к теории конечных деформаций, область применения этой теории слишком ограничена и имеющиеся решения крайне немногочисленны. Подобранный материал в основном соответствует университетской программе. Преподаватель всегда сможет выбрать отсюда те разделы, которые покажутся ему более интересными. В практике преподавания теории упругости на механико-математическом факультете МГУ автор отказался от изложения теории изгиба Сен-Венана, считая, что вопрос о распределении касательных напряжений при изгибе ие очень важен. Однако появление композитных материалов с полимерной матрицей, которые слабо сопротивляются сдвигу, заставило ввести опять теорию касательных напряжений при изгибе для балок прямоугольного сечения — что нужно для практики. Вообще, применение в технике композитных материалов заставило включить в курс элементы теории упругости анизотропных тел. [c.13] Предметом гл. 12 служит то, что принято называть прикладной теорией упругости — стержни, пластины и оболочки. Общие пропорции курса не позволили уделить этим важным техническим объектам много места, да вряд ли это было бы целесообразно. Для практических расчетов следует обращаться к специальной литературе, изобилующей длинными формулами, таблицами и графиками. Общая точка зрения, проводимая в данной главе, состояла в том, чтобы получать во всех случаях основные уравнения с помощью единообразного приема, а именно отправляясь от вариационных принципов. [c.14] посвященная теории дислокаций, ни в какой мере не относится к физике твердого тепа, где эта теория находит приложения. Это — иллюстрация методов теории упругости, дислокации предполагаются помещенными в однородную изотропную сплонгную среду. Автор предвидит возможную критику его за то, что материал, помещенный в этой главе, соответствует состоянию теории примерно в 50-х годах. Но в теории упругих дислокаций после этого сделано не так уж много. Автору пришлось решительно противостоять соблазну изложить здесь континуальную теорию дислокаций, это завело бы его, пожалуй, слишком далеко. [c.14] Теория пластичности излагается в двух главах, в гл. 15 — теория идеальной пластичности, в следующей гл. 16 — теория упрочняющихся пластических материалов. Если теория предельного равновесия пластических тел замкнута в себе, опирается на ряд строго доказанных теорем и располагает точными методами, теория упрочняющегося пластического тела имеет еще довольно расплывчатые контуры, предмет ее — скорее обсуждение и сравнение некоторых гипотез и формулировка некоторых принципов довольно общего характера. Читатель заметит эту разницу, объясняемую существом дела. [c.14] Наследственная теория упругости и теория ползучести металлов при высоких температурах описывают сходные внешне явления совершенно различными средствами. Как по первому, так и по второму предмету автору принадлежат отдельные монографии довольно большого объема, поэтому выбор минимума материала для этих глав представил определенные субъективные трудности. [c.15] 19 относится к механике разрушения. В современной литературе ча то под механикой разрушения понимается один узкий ее раздел, а именно теория распространения треш,ин хрупкого и квазихрупкого разрушения. Весь формальный аппарат для этого подготовлен ранее, поэтому здесь дается лишь некоторая сводка известных уже читателю результатов и практические выводы из них. Большая же часть главы относится к условиям прочности хрупких материалов, теории накопления повреждений при длительном действии нагрузок при высоких температурах. Здесь же сообщ ены краткие сведения об усталостном разрушении. Автор полагает, что вопросы прочности как в принципиальном, так и в прикладном аспекте составляют необходимый элемент образования механика-универсанта и механика-инженера, и сознает совершенно недостаточный объем излагаемого им материала, но в заглавии книги фигурирует только слово механика , но не прочность , не расчеты , не сопротивление материалоЕ . [c.15] Наконец, в последней, двадцатой главе излагаются основы теории высокопрочных композитных материалов волокнистого строения, нашедших применение в последние годы. Эта теория еще далека от завершения, что, вероятно, почувствует читатель. [c.15] Автор считал бы полезным дать физическое введение или послесловие, вероятно именно послесловие, поскольку о физических теориях и фактах нужно говорить на достаточно развитом механическом и математическом языке. Но ограниченность объема книги не позволила сделать это. [c.15] В современной литературе по механике сплошной среды часто излагается общая теория построения определяющих уравнений для разного рода сред, причем подход к этому у разных ученых различен. В данной книге обсуждаются лишь простейшие модели и простейшие виды определяющих уравнений, относяпщеся к таким материалам и таким процессам, которые изучены достаточно хорошо экспериментально. Обсуждение наряду с реальными моделями всего многообразия возможных мыслимых моделей деформируемого твердого тела в рамках этого курса казалось автору неуместным, хотя это отнюдь не означает отрицательного его отношения к подобного рода попыткам вообще. [c.15] Механика твердого тела, будучи одной из глав общей механики, изучает движение реальных твердых тел. Различие между твердыми телами, с одной стороны, жидкостями — с другой, иногда кажется интуитивно ясным (нанример, сталь и вода), иногда отчетливую границу провести бывает трудно. Лед представляет собою твердое тело, однако ледники медленно сползают с гор в долины подобно жидкости. При прокатке раскаленного металлического листа между валками прокатного стана металл находится в состоянии пластического течения и термин твердое тело по отношению к нему носит довольно условный характер. Неясно также, следует ли отнести к жидким или твердым телам такие вещества, как вар, битум, консистентные смазки, морской и озерный ил и т. д. Поэтому дать определение того, что называется твердым телом затруднительно, да пожалуй и невозможно. В последние годы наблюдается определенная тенденция к аксиоматическому построению механики без всякой апелляции к интуиции и так называемому здравому смыслу . Таким образом, вводятся различные модели, иногда чисто гипотетические, иногда отражающие основные черты поведения тех или иных реальных тел и пренебрегающие второстепенными подробностями. Для таких моделей можно установить некоторый формальный принцип классификации, позволяющий отделить модели жидкостей от моделей твер1а.ых тел, но эта классификация отправляется от свойств уравнений, но не тел как таковых. Поэтому термин механика твердого тела будет относиться скорее к методу исследования, чем к его объекту. [c.16] Вернуться к основной статье