ПОИСК Статьи Чертежи Таблицы Определение параметров математических моделей методом моментов из "Динамика процессов химической технологии " Рассмотрим применение метода моментов для оценивания коэффициентов математических моделей. [c.271] При использовании метода моментов основной проблемой является нахождение функциональной зависимости (6.2.1) между моментами входной и выходной функций. Рассмотрим некоторые методы построения таких функциональных зависимостей для линейных операторов. [c.272] Заметим, что при выводе соотношений для моментов иногда целесообразно вводить безразмерное время, для которого в данной главе используем обозначение i = tft p, где t p — некоторый масштаб времени. Выбор этого масштаба определяется условиями конкретной задачи. Чаще всего наиболее естественным масштабом времени является среднее время пребывания жидкости или газа в аппарате ср = l/w I — длина аппарата, w — скорость). [c.272] Для определенности будем считать, что входное возмущение — импульсное, т. е- входное воздействие u t) представлено в виде u t) = Uoи (t), где о = onst, u t) = a6(t). Выходную функцию v(t), соответствующую этому воздействию, представим в виде v(t) =vo + v t), где Vo = A(a.u. .., a )uo, v t)=A(ai,. .., a )u (t). [c.272] При экспериментальном исследовании динамики процессов интерес представляют моменты откликов v (t) на возмущения Получить явные выражения для моментов ц (и ) можно несколькими способами. [c.272] Таким образом, для получения момента любого порядка некоторой функции г з( ) достаточно продифференцировать по р необходимое число раз изображение tj (р) этой функции и положить р = 0. Получение явных выражений для момента с помощью выражения (6.2.6) имеет тот недостаток, что при этом можно получить только моменты, являющиеся интегралами по бесконечному промежутку времени. [c.273] Решив это уравнение относительно и, имеем и р) = аг/(р + + ai). [c.274] Нетрудно показать, что при любых возмущениях u t), сосредоточенных на конечном интервале, все моменты функции отклика конечны. [c.274] Интегралы, определяющие моменты выходных функций, расходятся в том случае, если входное воздействие не стремится к О при /- оо. [c.274] Перейдем к обсуждению зависимости моментов кривых отклика от вида входного возмущения. Будем считать, что известны явные выражения для моментов кривых отклика, соответствующих входному возмущению вида и t) =b t). Обозначим эти моменты через М.Д. Пусть теперь входное возмущение и t) имеет произвольную форму. Единственным ограничением, накладываемым на является существование моментов Lk(u ), которые будем обозначать jift вх. Примеры таких возмущений приведены на рис. 6.2. [c.276] Аналогично можно получить выражения для моментов более высоких порядков. [c.277] Сделаем несколько замечаний о выборе уравнений (6.2.1) для определения параметров математических моделей. Очевидно, число этих уравнений должно быть равно числу параметров, подлежащих определению. Однако уравнений вида (6.2.1) бесконечно много, и, следовательно, возникает вопрос, какие именно уравнения нужно выбрать для нахождения параметров математических моделей. [c.278] Вернуться к основной статье