ПОИСК Статьи Чертежи Таблицы Получение характеристических функций для моделей с сосредоточенными параметрами из "Динамика процессов химической технологии " В конце раздела 2.2. уже был приведен простой пример отыскания весовой и передаточной функций объекта, описываемого обыкновенным дифференциальным уравнением первого порядка с постоянными коэффициентами. Теперь будут изложены основные способы определения весовой, переходной и передаточной функции линейных объектов с сосредоточенными параметрами, математическая модель которых включает только обыкновенные дифференциальные уравнения. Рассмотрим общий случай, когда коэффициенты уравнений являются произвольными функциями времени, т. е. объект не является стационарным. [c.82] Нетрудно убедиться, что дифференцируя (3.1.8) по т получим —G(t, т) в согласии с общей формулой (2.2.68). [c.84] Для операторов, задаваемых уравнением (3.1.1) при п 1, получить явные выражения для G t, т) и Н t, т), аналогичные формулам (3.1.7) и (3.1.8), уже не удается. Все, что можно сделать,— это получить линейное однородное уравнение для весовой функции G t,x). [c.84] Аналогичные выражения для g t) можно получить в том случае, когда характеристическое уравнение имеет несколько кратных корней (см. [4]). [c.87] весовые функции операторов Л], Л2 известны. Осталось установить правило, по которому из весовых функций сомножителей можно определить весовую функцию произведения операторов. [c.87] Формула (3.1.24) дает решение задачи о нахождении весовой функции оператора, задаваемого с помощью уравнения (3.1.1) с нулевыми начальными условиями. Проиллюстрируем изложенную схему определения весовой функции произведения операторов на простом примере. [c.88] Оператор А u(t) v t), задаваемый с помощью уравнения (3.1.25) с нулевым начальным условием v (t) , о = О, можно представить в виде произведения А = A2A 1. [c.88] Таким образом, параметрическая передаточная функция F(t,p) является решением уравнения (3.1.31). Это уравнение аналогично уравнению (3.1.15) для определения весовой функции оператора Ла, задаваемого с помощью уравнения (3.1.11). Уравнение для параметрической передаточной функции оператора получится из (3.1.31) подстановкой Ч ( , р) = 1. [c.90] При достаточно медленном изменении коэффициентов уравнения (3.1.1) во времени ряд (3.1.38) быстро сходится, и с достаточной степенью точности можно представить параметрическую передаточную функцию в виде суммы нескольких первых его членов. [c.91] Формула (3.1.42) очень удобна для вычисления реакций стационарного объекта на различные входные воздействия u t). [c.91] Передаточная функция стационарного объекта, описываемого уравнением (3 1.1), является дробно-рациональной функцией вида (3.1.35). Поскольку для дробно-рациональных функций переход к оригиналам осуществляется весьма просто, выражение (3.1.35) часто используют для определения весовой и переходной функций стационарного объекта. В соответствии с соотношениями (2.2.74) и (2.2.76) для определения весовой функции g t) требуется применить обратное преобразование Лапласа к функции W p), а для определения переходной функции h(t) — K функции W p)/p. Необходимо разложить дробно-рациональные функции W (р) и р)/р на простейшие дроби и осуществить переход к оригиналам в каждом слагаемом. [c.92] Нетрудно убедиться, что в данном случае выполнено общее соотношение g t) = dh t)/dt. [c.93] Для реальных химико-технологических систем всегда выполнено условие Ра О (А = 1, 2,. .., п), поэтому из (3.1.47) получаем lim h(t) = bolao. [c.93] Как И В одномерном случае, передаточные функции стационарного объекта имеют дробно-рациональный вид. Отметим одну характерную особенность передаточных функций объекта, описываемого многомерным функциональным оператором. Передаточная функция стационарного объекта, описываемого одним уравнением вида (3.1.1) с постоянными коэффициентами, представляет собой дробно-рациональное выражение (3.1.35), в числителе которого стоит многочлен порядка т, где т — наивысший порядок дифференцирования в правой части уравнения (3.1.1). В том случае, когда в правую часть (3.1.1) входит только функция u t), а не ее производные, этот многочлен вырождается в константу, и передаточная функция принимает вид (3.1.45). В многомерном случае, когда объект имеет по несколько входных и выходных параметров, все передаточные функции также являются дробно-рациональными. Однако порядок многочлена, стоящего в числителе этих дробно рациональных функций, отличен от нуля даже тогда, когда в уравнения входят только параметры Ui i) и не входят их производные. [c.96] Полиномы Ф /(р) Представляют собой определители, получающиеся из (3.1.53) заменой /-го столбца на столбец коэффициентов при t-M входном параметре, т. е. [c.96] После того как определены передаточные функции объекта, их можно при необходимости использовать для нахождения весовых и переходных функций по формулам (2.2.87). Для этого нужно разложить дробно-рациональные функции Wij p) и Wij p)/p на простейшие дроби и перейти от изображений к оригиналам. Наибольшие затруднения возникают при отыскании корней полинома Ф(р), стоящего в знаменателе дробно-рациональной функции Wij(p), поскольку этот полином обычно имеет большой порядок. [c.96] Вернуться к основной статье