ПОИСК Статьи Чертежи Таблицы Изгиб пластинок Общие понятия. Гипотезы теории изгиба пластинок из "Сопротивление материалов 1986 " Пластинкой (рис. 464) называют тело, ограниченное двумя плоскостями, расстояние между которыми h (толщина пластинки) мало по сравнению с размерами этих плоскостей. Плоскость, которая делит везде толщину пластинки пополам, называется срединной плоскостью. Линия пересечения срединной плоскости с ограничивающими пластинку боковыми поверхностями образует контур пластинки. [c.496] Усилия и моменты в пластинках принято относить к единице длины того сечения, в котором они действуют. Эти погонные усилия измеряют в ньютонах на метр (Н/м), а погонные моменты — в ньютон-метрах на метр (И-м/м). [c.497] Основное значение при расчете пластинок на прочность имеет величина изгибающих моментов, точнее, нормальных напряжений изгиба. Напряжения, вызванные остальными внутренними силовыми факторами, бывают сравнительно малыми и существенного влияния на прочность не оказывают. Их обычно не определяют. [c.497] Прямоугольные пластинки принято рассматривать в прямоугольной системе координат j , у, 2, располагая оси х и у в срединной плоскости (рис. 464). [c.497] При изгибе пластинки различные ее точки получают перемеше-ния, которые зависят от величины внешних сил, геометрических размеров и характера закрепления пластинки, а также от свойств материала, из которого она сделана. Перемещения точек срединной плоскости по перпендикулярам к этой плоскости, т. е. параллельные оси 2, называют прогибами и обозначают w. Они зависят от координат точек X и у ш = (х, у). Поверхность, в которую превраш,ается срединная плоскость при изгибе пластинки, называется срединной поверхностью. Функция прогибов w = w x, у) одновременно является функцией, описывающей срединную поверхность пластинки. [c.497] Если пластинка закреплена так, что при изгибе ее противоположные края не могут сближаться, то в закреплениях возникают горизонтальные реакции и в пластинке появляются растягивающие усилия и напряжения, равномерно распределенные по толщине. Растягивающие (сжимающие) напряжения возникают и в свободной пластинке, когда искривленная при изгибе ее срединная поверхность не развертывается в плоскость. Как в первом, так и во втором случае величина этих напряжении зависит от величины прогиба. Исследования показали, что если максимальный прогиб не превышает одной пятой толщины пластинки, то растягиваюшие (сжимающие) напряжения малы по сравнению с изгибными и ими можно пренебречь, не выходя за пределы допустимой для инженерных расчетов погрешности. [c.497] При расчетах жестких пластинок можно пользоваться принципом сложения (независимости) действия сил. Например, если пластинка при изгибе растягивается или сжимается силами, не зависящими от и.згиба, то нормальные напряжения от изгиба и растяжения (сжатия), вычисленные независимо друг от друга, суммируют, как в подобных случаях в балках. [c.498] В дальнейшем рассматриваются только жесткие пластинки. [c.498] На основании гипотезы прямых нормалей установлен линейный закон изменения по толщине пластинки нормальных напряжений изгиба и касательных напряжений кручения и получены формулы для углов поворота и прогибов. [c.498] Кроме этих гипотез и ограничения величины прогиба, принимают, что материал пластинки однородный, изотропный, а возникающие напряжения меньше предела пропорциональности и поэтому напряжения и деформации связаны между собой законом Гука. [c.498] Вернуться к основной статье