ПОИСК Статьи Чертежи Таблицы Основы расчета подшипников сухого трения из "Подшипники сухого трения Издание 2 " Целью расчета подшипника сухого трения является установление допустимых значений действующей нагрузки, скорости скольжения, температуры и других параметров и их соответствия физико-механическим свойствам выбранных материалов пары трения втулка — вал при принятых геометрических соотношениях, обеспечивающих наибольший срок службы и достаточно высокие антифрикционные свойства. Речь идет о том, чтобы в отсутствии смазывающего материала иа трущейся поверхности получить наибольшую износостойкость подшипника и обеспечить минимальное изменение его геометрических размеров во времени с учетом действующих условий эксплуатации. [c.19] При конструктивной разработке машины или агрегата производится расчет динамической системы вала, в результате которого определяются нагрузка, действующая на подшипник (реакция в опоре), N (кгс), диаметр шейки вала d (в м) и частота вращения вала п (об/мин). Кроме этих величин из технР1ческого задания на проектирование известными являются окружающая среда и ее свойства (коррозионная активность, наличие абразивных взвесей и их размеры, вязкость, радиоактивное воздействие и др.), температура окружающей среды, вид нагрузки (спокойная, ударная, вибрационная и т. п.). [c.19] Используя имеющиеся данные, а также известные физикомеханические свойства материалов, которые могут применяться для подшипников сухого трения, производят предварительный выбор материала подшипника. При выборе материала подшипника руководствуются соображениями, изложенными в п. 2. Затем определяют геометрические размеры подшипника длину подшипника /, толщину стенки подшипника s и особенности его конструктивного устройства (вид крепления втулки, установку в металлическую обойму, фаски и т. д.). [c.19] Полученное значение длины подшипника сопоставляют со стандартными размерами (например, по ГОСТ 1978—73). С другой стороны, длина подшипника зависит от оптимального отношения длины к диаметру l/d, которое устанавливается практикой эксплуатации подшипников и дано в соответствующих параграфах. [c.19] Расчет по критерию прочности. Этот расчет заключается в обеспечении необходимой прочности подшипника, материал которого подвергается объемному сжатию под действием нагрузки. К таким материалам относятся, например, пластмассы. [c.20] Несущая способность подшипника — величина условная, так как контакт подшипника и вала происходит на дуге менее 180° и фактическая площадь контакта меньше значения, принимаемого в расчете. Точно определить ее расчетным путем сложно из-за ряда факторов, которые трудно учесть в инженерном расчете. Пример расчета пластмассовых подшипников приведен в литературе [70]. [c.20] Значения [р] и [о] задаются в виде справочных данных и приведены в п. 5—13 и табл. 5. [c.22] Расчет на изнашивание производят по величине износа и форме изношенной поверхности. Форма изношенной поверхности рассчитывается в каждом конкретном случае, исходя из геометрических соотношений изнашиваемого сопряжения. [c.24] Моменты сил трения в опорах на центрах, в опоре со сферИ ческим концом вала и других конструкциях приведены в лите-ратуре [40, 58]. К- П. Явленским показано, что момент сил трения существенно зависит от вибрации [40]. Вибрация уменьшает момент сил трения при трогании, увеличении зазора в опоре и частоты возмущающей силы. Разработаны конструкции опор, в которых осуществлено принудительное движение подшипников относительно шейки вала или колебание подшипника в направлении вращения вала. В таких опорах величина момента сил трения может быть снижена до 200 раз. Момент сил трения может быть уменьшен также тщательной приработкой, применением специальных шарикоподшипников, введением жидкого смазочного материала. [c.26] Расчет по критерию теплостойкости. Нормальный тепловой режим при установившейся работе подшипника обеспечивает стабильность физико-механических свойств материалов пары трения и геометрических размеров подшипника и является основным фактором надежности, долговечности и необходимого срока службы. [c.26] Из формулы (46) видно, что важным критерием при расчете подшипников сухого трения является критерий теплостойкости — допускаемое значение произведения давления на скорость скольжения [ри], кгс-м/(см -с), которое характеризует увеличение температуры вследствие тепловыделения во время трения. При повышенной температуре подшипники допускают меньшие давления и скорости, их срок службы уменьшается. [c.26] Следовательно, критерий теплостойкости [pv определяет доЛ говечность работы подшипника. [c.27] Значение [pv] получают экспериментально в определенных условиях теплоотвода и при соответствующей им температуре подшипника. Испытания образцов материалов и подшипников производят на машинах трения и специальных стендах со ступенчатым повышением нагрузки при постоянной скорости скольжения. С увеличением нагрузки наступает такой момент, когда не могут быть получены устойчивые значения температуры в зоне контакта или коэффициента трения при продолжении эксперимента или наблюдаются признаки катастрофического из-нашивания. Максимальное давление, умноженное на скорость скольжения, принятую в данном эксперименте, соответствует допускаемой величине критерия теплостойкости [pv], в связи с чем формула (48) действительна только при соблюдении подобных условий т .плoQTBOдa для проектируемого подшипника. Значение [pv] для каждого материала обычно приводится в виде справочных данных для расчета. При расчете подшип ника, используя соотношения (24), (25) н (48), корректируют размеры подшипника / и u в указанных пределах Ijd, оптималь-ные значения которых определены из практики эксплуатации. Если оптимальные соотношения l/d не выполнены для выбранного материала подшипника, материал подшипника подбирается заново и расчет повторяется. [c.27] Авторами работы [74] предложен метод расчета срока службы Т подшипника с использованием критерия [ри] и эмпирических коэффициентов. Этот метод расчета основан на иС пользовании результатов испытаний подшипников сухого трения на износ в стендовых условиях максимально приближенных к производственным испытаниям. На основании проведенных испытаний устанавливают эмпирическую связь между долговечностью подшипника до выхода из строя и величиной допустимого значения коэффициента [pv]. [c.27] В большинстве случаев условия отвода тепла для проектируемого подшипника отличаются от условий, имевшихся при проведении эксперимента. Кроме того, может быть неизвестно, при какой температуре подшипника величина [ро] была получена. Поэтому необходимо произвести дополнительный тепловой расчет проектируемого подшипника, поскольку температура его трущейся поверхности определяется соотношением выделенного и отведенного тепла. [c.28] Расчет теплового баланса подшипника. Тепло, выделившееся в подшипнике без смазки, может быть отведено во внешнюю среду через корпус подшипника и вал в случае, если материалы вала и подшигтнка обладают высокой теплопроводностью. Поскольку теплоотвод через корпус подшипника значительно выше, чем через вал, то в расчете ограничиваются вычислением теплоотвода через корпус. Такой же расчет производят, когда шейка вала выполнена из материала с низкой теплопроводностью. Если же вкладыш подшипника толстостенный и выполнен из материала, плохо проводящего тепло, то отводимое тепло рассчитывают через вал. [c.29] Подшипники для приборов, бытовой и вакуумной техники и др. [c.32] Если условие (61) не соблюдается, то необходимо усилить теплоотвод от подшипникового узла путем увеличения теплоотдающей поверхности или применения искусственного охлаждения, например водой. [c.32] Значения допускаемых величин [р], [у], [ри] и [ ] для различных подшипниковых материалов при сухом трении приведены в табл. 5. [c.32] Вернуться к основной статье