ПОИСК Статьи Чертежи Таблицы Качественное рассмотрение колебаний маятника из "Основы теории колебаний " Для иллюстрации путей качественного исследования колебательных движений весьма полезно рассмотрение некоторых типичных примеров механических систем. В качестве одной из простейших механических нелинейных консервативных систем рассмотрим идеальный маятник. [c.23] Два типа фазовых траекторий соответствуют двум типам движения. Замкнутые траектории, окружающие особые точки типа центр с координатами у = О, X 2пп (п — любое целое число), соответствуют колебательным движениям маятника вокруг устойчивого нижнего положения равновесия, отвечающего минимуму потенциальной энергии. Особые точки / = 0, х = = (2п -- 1) л представляют особые точки типа седло, соответствующие верхнему положению равновесия маятника — максимуму потенциальной энергии. [c.24] Убегающие траектории, которые получаются при соответствуют вращательным движениям маятника, возникающим при сообщении ему начального количества движения, которое обеспечивает проход через верхнее положение со скоростью, отличной от нуля. На фазовой плоскости это будет соответствовать выходу описывающей точки за пределы области, ограничиваемой кривыми С , С,. Эти кривые, проходящие через седла и служащие в окрестностях данных точек асимптотами гиперболических фазовых траекторий, являются сепаратрисами. Они разделяют топологически различные области на фазовой плоскости область траекторий, приходящих из —оо и уходящих в фоо, и область замкнутых траекторий. [c.24] Вернуться к основной статье