ПОИСК Статьи Чертежи Таблицы Общие свойства течения невязкой жидкости из "Механика двухфазных систем " В большом числе случаев двухфазные системы удобно рассматривать как сплошную фазу (жидкость или газ), в которой распределены частицы другой дискретной фазы (капли жидкости, пузырьки пара или газа, твердые частицы). Примеры такого рода систем могут быть взяты из самых различных областей человеческой деятельности — от многочисленных отраслей техники до биологии и медицины. Взаимодействие дискретной частицы с окружающим ее объемом несущей ( сплошной ) фазы играет фундаментальную роль в анализе двухфазных систем изучение этого взаимодействия составляет содержание метода единичной контрольной ячейки. Такая ячейка содержит лишь одну дискретную частицу и прилегающую к ней область несущей фазы. [c.182] Анализ закономерностей движения дискретной частицы внутри единичной ячейки позволяет переходить к построению теории двухфазной системы в целом. Успешная реализация метода единичной ячейки возможна лишь на базе механики одиночной частицы в объеме сплошной среды. Именно механика твердой частицы в жидкости или газе, капли жидкости в газе или в другой жидкости (не смешивающейся с первой), пузырьков газа или пара в жидкости составляет основное содержание настоящей главы. При этом сначала будут рассмотрены наиболее простые, допускающие аналитическое решение случаи обтекания сферической частицы жидкостью. [c.182] Поскольку многие жидкости и в первую очередь наиболее распространенные — вода и воздух — характеризуются весьма малой вязкостью, то в практически важных задачах силы вязкости достаточно часто играют ничтожную роль почти во всем поле течения. Мерой отношения инерционных и вязкостных сил является число (критерий) Рейнольдса Re = рн // 1, где w и / — характерные для рассматриваемой задачи масштабы скорости и длины. При Re 1 силы вязкости несущественны во всей области течения, кроме тонкого пограничного слоя (хотя влияние этого слоя на характеристики течения и, в частности, на сопротивление, испытываемое движущимся в жидкости телом, в общем случае весьма существенно). Если пограничный слой не отрывается от обтекаемой поверхности, то поле скоростей и давлений за пределами погранслоя может быть найдено методами классической механики идеальной жидкости. Важную область применения теории невязкой жидкости представляют собой течения со свободной поверхностью. Такой тип течений был рассмотрен в гл. 3 применительно к анализу устойчивости границы раздела жидкости и газа. В настоящей главе методы теории течений со свободной поверхностью будут использованы при рассмотрении движения паровых (газовых) пузырьков в жидкости. [c.183] При известных потенциалах скоростей и массовых сил интеграл Коши—Лагранжа позволяет находить распределение давления в жидкости. [c.185] Уравнение (5.5) называется уравнением Лапласа, а функция ф, удовлетворяющая этому уравнению, — гармонической функцией. Уравнение Лапласа — это линейное дифференциальное уравнение, в силу чего его частные решения можно дифференцировать, складывать и получать таким образом новые частные решения этого уравнения. Использование условий однозначности (обычно условий на границах области течения) позволяет получать единственные решения для гармонической функции, а следовательно, и для поля скоростей в различных конкретных задачах. [c.186] Нетрудно убедиться, что решение (5.6) удовлетворяет уравнению (5.5). [c.186] Вернуться к основной статье