ПОИСК Статьи Чертежи Таблицы Профиль и крыло конечного размаха в потоке несжимаемой жидкости из "Аэродинамика в вопросах и задачах " В аэродинамике профиля крыла, обтекаемого установившимся несжимаемым потоком, важной задачей является расчет аэродинамических коэффициентов тонких слабо изогнутых профи-.аей, расположенных под малым углом атаки. Течение около таких профилей маловозмущенное, поэтому обтекание профиля можно рассчитать, заменив его системой вихрей, непрерывно распределенных вдоль средней линии профиля. Метод, основанный на замене профиля системой вихрей, предполагает, что поперечные размеры профиля малы по сравнению с длиной хорды профиля, т. е. фактически рассматривается обтекание не собственно профиля, а его средней линии. [c.161] Эффективный метод изучения свойств плоского течения — метод комплексного переменного, получивший в аэродинамике широкое применение. Эта связь аэродинамики плоскопараллельного потока несжимаемой жидкости с хорошо разработанной теорией функций комплексного переменного позволяет успешно решать также задачи, связанные с пространственным характером течения. [c.161] Особое значение этот метод приобрел в теории крыла, позволяя определить комплексный потенциал течения и результирующую силу давления потока на тело. [c.161] Следует отметить, что непосредственное определение комплексного потенциала потока представляет значительные сложности. Поэтому во многих задачах комплексный потенциал находят косвенным путем с помощью метода конформных преобразований, имеющих большое значение в теории крыла, обтекаемого плоскопараллельпым потоком невязкой жидкости. Используя этот метод, можно определить геометрические и аэродинамические характеристики профилей, получаемых конформным отображением круга с помощью специально подобранных для этого отображающих функций. Для понимания сущности этого преобразования здесь даны задачи на отображение круга в отрезок и отрезка в окружность. [c.161] В основе современной теории крыла лежит теорема Жуковского о подъемной силе. Исследуя обтекание тела невязкой жидкостью, Н. Е. Жуковский предложил искать источник силового воздействия на тело в образовании циркуляции скорости, обусловленной наличием вихря. Он получил формулу для определения подъемной силы при безотрывном обтекании произвольного контура несжимаемой жидкостью. М. В. К е л д ы ш и Ф. И. Ф р а н к л ь доказали, что формула Жуковского справедлива и для сжимаемого газа при дозвуковых скоростях течения. [c.161] Идея Жуковского заменить крыло одним или несколькими присоединенными вихрями, неподвижно связанными с крылом и создающими в потоке такую же циркуляцию скорости по любому замкнутому контуру, какую в действительности создает крыло, позволяет решать многие практические задачи гидродинамики крыла бесконечного размаха. [c.161] Эффективным методом решения гидродинамических задач обтекания крыльев конечного размаха является предложенный С. А. Чаплыгиным метод замены таких крыльев П-об-разной вихревой системой. Специфическая особенность обтекания крыльев конечного размаха — скос потока и наличие индуктивного сопротивления. [c.161] Следует отметить, что результаты, полученные в аэродинамике малых скоростей, в частности в предположении течения несжимаемой жидкости, имеют не только самостоятельное значение, но и используются в аэродинамических исследованиях при больших скоростях движения. [c.161] Вернуться к основной статье