ПОИСК Статьи Чертежи Таблицы Кинематика жидкой среды из "Аэродинамика в вопросах и задачах " Кинематика жидкости — один из важнейших разделов аэромеханики. Решение основной задачи аэродинамических исследований, связанной с нахождением в каждой точке потока параметров, определяющих движение жидкости (давление, плотность, температура и др.), можно свести при определенных условиях к нахождению поля скоростей, т. е. к решению кинематической задачи. По известному распределению скоростей можно вычислить остальные параметры течения, суммарное силовое воздействие, а также определить теплообмен между телом и омывающим газом. [c.39] В основу изучения кинематики жидкости положена гипотеза о непрерывности изменения кинематических параметров потока. Иногда это свойство может нарушаться, например в особых точках, на линиях или поверхностях разрыва. При кинематическом исследовании жидкой среды используют либо метод Лагранжа, согласно которому рассматривают движение индивидуальных жидких частиц и определяют для каждой из них траектории, т. е. [c.39] При изучении кинематики жидкости очень важно уметь находить уравнения семейств линий тока и траектории жидких частиц, положение точек разветвления потока и т. п., что необходимо для установления особенностей обтекания тел различных конфигурации. Поэтому в настоящей главе большое внимание уделено рассмотрению таких вопросов и задач, которые позволят освоить методы исследования стационарных и нестационарных течений жидкости, представить их кинематический характер, найти уравнения линий тока и траектории жидких частиц для различных видов движения. [c.40] Течение жидкости может быть вихревым или безвихревым (потенциальным). Исследование безвихревого потока можно свести к нахэждению так называемой потенциальной функции (или потенциала скоростей), знание которой позволяет полностью рассчитать поле скоростей различных течений. Для некоторых видов вихревого потока определение его кинематических характеристик можно свести также к отысканию одной неизвестной функции — функции тока. Следовательно, нахождение потенциала скоростей и функции тока — важнейшая задача аэродинамики. В связи с этим предлагается ряд вопросов н задач, связанных с нахождением потенциальной функции и функции тока, а также построением кинематического характера течения и опре- делением поля скоростей для случаев, когда эти функции известны. [c.40] При исследовании обтекания летательных аппаратов или их элементов, в частности профилей и крыльев конечного размаха, широко используется теория вихрей, поэтому здесь отражены вопросы, связанные с определением циркуляции жидкости, расчетом индуцированных вихрями скоростей, исследованием системы вихрей — их взаимодействия с поступательным потоком и т. п. [c.40] Изучение кинематики жидкости теснейшим образом связано с теорией функций комплексного переменного. При этом выбор некоторой аналитической функции можно связать с вполне определенным характером течения. В соответствии с этим такая функция позволяет найти потенциал скоростей и функцию тока. [c.40] Используя принципы наложения потенциальных потоков, решение задачи об обтекании тела несжимаемой жидкостью и построение соответствующей кинематической схемы течения можно свести к отысканию такого распределения особых точек (источников, диполей и т. п.), которое при отсутствии тела даст ту же самую картину течения, как и при наличии тела в потоке. [c.40] Поэтому часть вопросов и задач посвящена определению комплексных потенциалов различных относительно простых или достаточно сложных течений, определению формы обтекаемых контуров по заданным комплексным потенциалам, нахождению кинематической схемы течений и полей скоростей. [c.40] Приведенный в настоящей главе материал поможет изучить основные методы исследования движения жидкой среды, более глубоко усвоить понятия и положения соответствующего теоретического курса, овладеть навыками и приемами решения многих практических задач кинематики жидкости. [c.40] Вернуться к основной статье