ПОИСК Статьи Чертежи Таблицы Пределы применимости формулы Эйлера и построение полного графика критических напряжений из "Сопротивление материалов Издание 13 " Казалось бы, что полученные в предыдущих параграфах результаты решают задачу проверки сжатого стержня на устойчивость остаётся выбрать лишь коэффициент запаса ку. Однако это далеко не так. Ближайшее же изучение числовых величин, получаемых по формуле Эйлера, показывает, что она дает правильные результаты лишь в известных пределах. [c.630] Для стали 5 при о я ЗООО кг1см формула Эйлера применима при гибкости Х 85 для чугуна — при Х 80, для сосны — при Х ПО и т. д. Если мы на фиг. 558 проведём горизонтальную линию с ординатой, равной 0 = 2000 кг]см , то она рассечёт гиперболу Эйлера на две части пользоваться можно лишь нижней частью графика, относящейся к сравнительно тонким и длинным Стержням, потеря устойчивости которых происходит при напряжениях, лежащих не выше предела пропорциональности. [c.631] Таким образом, надо найти способ вычисления критических напряжений и для тех слзгчаев, когда они превышают предел пропорциональности материалов, например, для стержней из мягкой стали при гибкостях от О до 100. [c.631] И теоретического решения этой задачи, но они скорее указывают путь к дальнейшим исследованиям, чем дают основания для практических расчётов. [c.632] Прежде всего надо выделить стержни с малой гибкостью, от О примерно до 30—40 у них длина сравнительно невелика по отношению к размерам поперечного сечения. Например, для стержня круглого сечения гибкости 20 соответствует отношение длины к диаметру, равное 5. Для таких стержней трудно говорить о явлении потери устойчивости прямолинейной формы всего стержня в целом в том смысле, как это имеет место для тонких и длинных стержней. [c.632] Эти короткие стержни будут выходить из строя главным образом за счёт того, что напряжения сжатия в них будут достигать предела текучести (при пластичном материале) или предела прочности Од (при хрупких материалах). Поэтому для коротких стержней, до гибкости примерно 30 4-40, критические напряжения будут равны, или немного ниже (за счёт наблюдающегося всё же некоторого искривления о си стержня), соответственно или (сталь), или Од (чугун, дерево). [c.632] Таким образом, мы имеем два предельных случая работы сжатых стержней короткие стержни, которые теряют грузоподъёмность в основном за счёт разрушения материала от сжатия, и длинные, для которых потеря грузоподъёмности вызывается нарушением з/с/яой-чивости прямолинейной формы стержня. Количественное изменение соотношения длины и поперечных размеров стержня меняет и весь характер явления разрушения. Общим остаётся лишь внезапность наступления критического состояния в смысле внезапного резкого возрастания деформаций. [c.632] В сжатых стержнях большой гибкости, для которых применима формула Эйлера, после достижения силой Р критического значения обычно наблюдается резкий рост деформаций. До этого момента прогибы, как правило, растут с ростом нагрузки, но остаются незначительными. Теоретически можно было бы ожидать, что до критической силы стержень будет оставаться прямым однако ряд неизбежных на практике обстоятельств — начальная кривизна стержня, некоторый эксцентриситет приложения нагрузки, местные перенапряжения, неоднородность материала — вызывают небольшие прогибы и при сжимающих силах, меньших критических. [c.632] Подобный же характер имеет и зависимость укорочений от напряжения при сжатии коротких стержней мы имеем ту же внезапность роста деформаций при определённой величине напряжений (когда о = о. ). [c.632] Нам остаётся теперь рассмотреть поведение сжатых стержней при средних величинах гибкости, например для стальных стержней при гибкостях от 40 до 100 с подобными значениями гибкостей инженер чаще всего встречается на практике. [c.632] По характеру разрушения эти стержни приближаются к категории тонких и длинных стержней они теряют свою прямолинейную форму и разрушаются при явлениях значительного бокового выпучивания. При опытах для них можно отметить наличие ясно выраженной критической силы в эйлеровом смысле критические напряжения получаются выше предела пропорциональности и ниже предела текучести для пластичных и предела прочности для хрупких материалов. [c.633] Однако потеря прямолинейной формы и понижение критических напряжений по сравнению с короткими стержнями для этих стержней средней гибкости связаны с такими же явлениями нарушения прочности материала, какие вызывают потерю грузоподъёмности в коротких стержнях. Здесь комбинируются и влияние длины, понижаюш,ее величину критических напряжений, и влияние значительного роста деформаций материала при напряжениях за пределом пропорциональности. [c.633] Экспериментальное определение критических сил для сжатых стержней производилось неоднократно как у нас, так и заграницей. Особенно обширный опытный материал собрал проф. Ф. Ясинский, составивший таблицу критических ( ломающих ) напряжений в зависимости от гибкости для целого ряда материалов и положивший начало современным методам расчёта сжатых стержней на устойчивость ). [c.633] На основании полученного опытного материала можно считать, что при критических напряжениях, меньших предела пропорциональности, все эксперименты подтверждают формулу Эйлера для любого материала. [c.633] Данные о коэффициентах а и Ь для прочих материалов приводятся в справочниках (см., например. Справочник под ред. А. Н, Динника, Москва, 1949). [c.633] Вернуться к основной статье