ПОИСК Статьи Чертежи Таблицы Энергетические зоны и поверхность Ферми в модели пустой решетки из "Введение в физику твердого тела " Мы выяснили, что существование энергетических зон — важнейшая особенность энергетического спектра электронов в кристалле. Построение энергетических зон — сложная задача теории твердого тела и, например, изложение методов построения зон выходит за рамки данного курса. Полезно дать предсгавление о виде энергетических зон и связанных с ними ферми-поверхностей в простом приближении. В качестве такого мы выбрали модель пустой решетки, т. е. решетки, характеризующейся исчезающе малым по величине периодическим потенциалом. Ввиду предельной слабости потенциала энергетические зоны пустой решетки строятся на основе приближения свободных электронов. [c.83] Теперь рассмотрим схему построения ферми-поверхности в том же приближении пустой решетки на примере РЬ. [c.84] Сначала вычисляется радиус фер-ми-сферы, содержащей в нашем случае (РЬ) 2 = 4 электрона иа атом. [c.84] ДлЯ построения ферми-поверхности в схеме приведенной зоны проводят радиусом kp несколько сфер Ферми с центрами в нескольких соседних узлах обратной решетки. Легко видеть, что первая зона Бриллюэна действительно будет заполнена полностью, а заключенные внутри сферы Ферми участки второй, третьей, четвертой зон Бриллюэна будут находиться соответственно между двумя, тремя, четырьмя пересекающимися сферами (рис. 4.11). [c.84] После построения поверхности Ферми в первой зоне Брил-люэна построенную поверхность часто транслируют в обратной решетке, переходя тем самым к схеме повторяющихся зон. В этой схеме удобно изучать такие явления, как динамику электронов в периодическом поле. [c.85] Вернуться к основной статье