ПОИСК Статьи Чертежи Таблицы Соотношения между напряжениями и деформациями изотропного тела при изменении его температуры из "Теория упругости " Рассмотрим деформирование однородного изотропного тела, сопровождающееся изменением его температуры. [c.67] Предположим, что в естественном состоянии (ej = О, aij = 0) тело имеет некоторую постоянную температуру Tq. [c.67] Будем рассматривать малые изменения температуры ip = Т — Тд в точках тела, при которых тепловая деформация имеет величину одного порядка малости по сравнению с tij, а упругие постоянные. материала и коэффициент линейного расширения а остаются при этом такими же, как и при То. [c.68] Термодинамическими параметрами, описывающими состояние упругого тела, будут компоненты тензора деформации и температура Т = То + 0. [c.68] Первое выражение в правой части последнего равенства представляет собой силовую упругую деформацию е /, а второе — тепловую деформацию е /. [c.69] Соотношения, определяемые формулами (3.87) и (3.90), впервые (1838) были получены Дюамелем (1797—1872) и несколько позднее Ф. Нейманом (1798—1895). Поэтому эти формулы называют законом Дюамеля—Неймана. [c.69] Вернуться к основной статье