ПОИСК Статьи Чертежи Таблицы Вывод тензора напряжения кажущегося турбулентного трения из уравнений движения Навье — Стокса из "Теория пограничного слоя " Для осреднения надо брать такой большой промежуток времени 1, чтобы осредненное значение совершенно не зависело от времени. Тогда осредненные по времени значения пульсационных величин будут равны, согласно опре- елению, нулю, т. е. [c.503] Прежде чем вывести связь между осредненным движением и кажущимися напряжениями, обусловленными пульсационным движением, дадим этим напряжениям наглядное пояснение с помощью теоремы импульсов. [c.503] Эти дополнительные напряжения называются кажущимися нйпряжениями турбулентного течения они складываются с напряжениями осредненного движения, с которыми мы познакомились при изучении ламинарных течений. Аналогичные дополнительные напряжения получаются и на площадках, перпендикулярных к осям г/ и 2. Совокупность всех девяти дополнительных напряжений называется тензором напряжений кажущегося турбулентного трения. Формулы (18.5) впервые были выведены О. Рейнольдсом из уравнений движения Навье — Стокса (см. следующий параграф). [c.504] Следовательно, уравнению неразрывности несжимаемого течения удовлетворяют составляющие скорости не только осредненного движения но и пульсационного. [c.506] В большей части случаев кажущиеся турбулентные напряжения значительно больше ламинарных напряжений, и поэтому последние часто можно не учитывать, не делая при этом какой-лнбо заметной ошибки. [c.507] Граничные условия. Осредненные по времени скорости, входящие в уравнения (18.9), должны удовлетворять таким же граничным условиям, как и истинные скорости при ламинарном течении, т. е. все составляющие скорости на твердых стенках должны быть равны нулю (условие прилипания). На стенках исчезают также все составляющие пульсационной скорости. Следовательно, на стенках все компоненты тензора кажущегося турбулентного трения равны нулю, и здесь остаются только вязкие напряжения ламинарного течения, так как они на стенках в общем случае не исчезают. Однако в непосредственной близости от стенки напряжения кажущегося турбулентного трения малы по сравнению с вязкими напряжениями ламинарного течения. Отсюда следует, что в очень тонком слое в самой непосредственной близости от стенки всякое турбулентное течение ведет себя в основном как ламинарное течение. В таком тонком слое, называемом ламинарным подслоем, скорости так малы, что силы вязкости здесь значительно больше сил инерции. [c.507] Это означает, что здесь не может существовать турбулентность ). К этому ламинарному подслою примыкает переходная область, в которой пульсации скорости уже настолько велики, что влекут за собой появление турбулентных касательных напряжений, сравнимых с силами вязкости. Наконец, на еще большем расстоянии от стенки турбулентные касательные напряжения полностью перевешивают ламинарные напряжения. Здесь и начинается собственно турбулентный пограничный слой. Толщина ламинарного подслоя обычно столь мала, что практически она либо совсем не может быть измерена, либо может быть измерена только с очень большим трудом. Тем не менее этот подслой оказывает решающее влияние на развитие течения и особенно на возникновение сопротивления, что вполне понятно, так как явления, происходящие в подслое, вызывают касательные напряжения на стенке, а вместе с ними и сопротивление трения. К этим вопросам мы вернемся ниже. [c.508] Уравнения (18.9) и (18.10) являются исходными для теоретического исследования турбулентных течений, точнее говоря, для расчета осредненных по времени величин, определяющих движение. Появляющиеся при таком расчете осредненные значения величин, квадратичных относительно пульсаций, можно понимать как компоненты тензора напряжения. Необходимо, однако, подчеркнуть, что одно такое толкование еще не дает многого для решения задачи. Уравнения (18.9) и (18.10) не могут быть использованы для рационального расчета осредненного движения до тех пор, пока не будет известна связь между пульсациями и осредненным движением. Такая связь может быть установлена только на основе эмпирических соображений. Именно эта связь между пульсациями и осредненным движением и составляет основное содержание гипотез о турбулентности, изложению которых мы посвятим следующую главу. [c.508] Вернуться к основной статье