Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Внося (8.34) в (8.30) и (8.31), мы увидим, что уравнения эти тождественно удовлетворены, какова бы ни была функция Ф(х, у). В этом виде решение (8.34) было дано Эри.

ПОИСК



Решение плоской задачи по методам Лява и Галёркипа

из "Курс теории упругости Изд2 "

Внося (8.34) в (8.30) и (8.31), мы увидим, что уравнения эти тождественно удовлетворены, какова бы ни была функция Ф(х, у). В этом виде решение (8.34) было дано Эри. [c.194]
Сама же функция /(х, у) есть гармоническая, т. е. [c.198]
Решение (8.63) проверяется простой подстановкой в формулы (8.56). Следует заметить, что функции Ф и Ф, содержат в себе бигармонические функции С и Г1у. [c.199]
Вследствие соотношений (8.74) под знаками интегралов стоят точные дифференциалы. [c.201]
ТО ПОД знаком интеграла в формуле (8.86) стоит точный дифференциал. [c.202]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте