ПОИСК Статьи Чертежи Таблицы Техническая термодинамика — научная база современной энергетики из "Термодинамика " Технические приложения составляют важнейшую составную часть современной термодинамики эту часть термодинамики ввиду большого значения выделяют обычно в самостоятельный раздел и называют технической термодинамикой. Современная техническая термодинамика является основой теории тепловых двигателей, тепловых машин и различных устройств и технологических процессов, в которых используется теплота или, точнее, осуществляются превращения внутренней энергии тел в теплоту и работу. Напомним, что само возникновение термодинамики было вызвано нуждами практической теплотехники. Таким образом, термодинамика с самого начала своего становления была органически связана с практикой. Эта связь сохранялась и укреплялась на всех этапах исторического развития термодинамики, что и сделало ее в широком смысле научной базой современной энергетики. [c.513] Основными областями технического применения термодинамики являются анализ циклов тепловых двигателей и теплосиловых установок, в которых полезная внешняя работа производится за счет выделяющейся при сжигании топлива теплоты анализ циклов ядерных энергетических установок, в которых источником теплоты служит реакция деления расщеп-ляюпгихся элементов анализ принципов и методов прямого получения электрической энергии, в которых стадия превращения внутренней энергии тел или, как говорят еще, химической энергии в теплоту не имеет места, и последняя непосредственно преобразуется в полезную внешнюю работу в форме энергии электрического тока анализ процессов тепловых машин (компрессоров и холодильных машин), в которых за счет затраты работы рабочее тело приводится к более высокому давлению или к более высокой температуре анализ процессов совместного или комбинированного производства работы и получения теплоты (или холода) для технологических или бытовых нужд анализ процессов трансформации теплоты от одной температуры к другой. [c.513] Значение термодинамики заключается в том, что она устанавливает принципы наиболее эффективного или оптимального преобразования различных видов энергии и тем самым дает ответ на первостепенный с практической точки зрения вопрос о том, как организовать рабочий процесс, чтобы к. п. д. был напбольши.м. Термодинамика, далее, делает возможным прогнозирование п оценку эффективности различных новых способов получения полезной работы, что имеет определяющее значение для выбора направлений развития энергетики. [c.513] Основными видами энергии, используемыми человечеством в практических целях, являются, как известно солнечная гидроэнергия, в том числе гидротермальная химическая ядерная. [c.514] Энергия, излучаемая Солнцем, огромна. Достаточно сказать, что если бы удалось использовать 0,1% всей поверхности Земли для размещения устройств, в которых солнечная энергия превращается в электрическую (такие устройстьва называются солнечными батареями) с к. п. д. не более 5%, то можно было бы получать ежегодно около 6-10 кет энергии, т. е. примерно в 40 раз больше современного годового потребления энергии во всем мире. Однако метод превращения солнечной энергии в электрическую пока еще слишком дорог и громоздок, а главное — требует размещения солнечных батарей на значительной части поверхности Земли. [c.514] Гидроэнергетический способ также относится к числу дорогостоящих и к тому же ограничен по своим ресурсам, вследствие чего на гидростанциях вырабатывается сейчас около 4% всей потребляемой энергии. [c.514] В последние двадцать лет началось практическое использование новых энергетических ресурсов, а именно энергии, освобождаемой при превращениях атомных ядер. Сейчас за счет ядерных ресурсов покрывается менее 1 % мирового потребления энергии. Однако целесообразность и преимущества этого нового источника энергии настолько очевидны, что позволяют с увренностью предсказать быстрый рост ядерной энергетики при этом будут использованы ядерные реакторы различных типов, в первую очередь на медленных нейтронах. Более отдаленной представляется перспектива использования энергии термоядерного синтеза легких элементов, которая полностью снимет угрозу исчерпания энергетических ресурсов. [c.514] В настоящее время известны и разрабатываются следующие пять способов непосредственного или бездшшинного преобразования химической энергии топлива в электрическую термоэлектрический (основывающийся главным образом на использовании полупроводников) термоэмиссионный магнитогидродинамический электрохимический фотоэлектрический. [c.515] Соответствующие устройства, в которых осуществляется превращение химической энергии в электрическую, называются термоэлектрическими генераторами, термоэмиссионными преобразователя.ми, магнитогндродина-мическими (МГД) генераторами, электрохимическими генераторами или топливными элементами, солнечными батарея.ми. [c.515] Первые три способа или предполагают сжигание топлива, как, например, магнптогидродинамический, или требуют поддержания достаточно высоких температур вовремя рабочего процесса, который осуществляется в весьма узком интервале температур. Вследствие этого к. п. д. термоэлектрических генераторов, термоэмиссионных преобразователей и МГД-генераторов оказывается сравнительно низким. Все эти генераторы и преобразователи могут иметь лишь вспомогательное значение в соединении с машинными способами получения электрической энергии, которые являются в настоящее время основными и, по-види.мому, долго будут оставаться таковыми. Так, например, МГД-генератор может быть применен в качестве головного высокотемпературного звена обычной теплосиловой электрической станции (возможно, что МГД-генераторы могут оказаться полезными и в тех случаях, когда необходимо получить большие мощности на короткое время и когда величина к. п. д. не является определяющей) термоэлектрический генератор может быть рационально сочленен с ядерным реактором. [c.515] Исключением в смысле отсутствия ограничений по к. п. д. являются электрохимические генераторы, которые в силу этого имеют большое будущее. [c.515] Вернуться к основной статье