Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Пусть Н = Т + V — гамильтониан обратимой системы, а Р = = - -Fo — ее линейный интеграл Рк — однородная форма по импульсам степени к). Ясно, что Я, F = Т, А + Т, о + V , Fl здесь слагаемые — однородные формы по импульсам степени 2, 1 и О соответственно. Функции Н и Г коммутируют, поэтому все эти формы равны нулю. Следовательно, Fo = О, а функция — интеграл обратимой системы (более того, — интеграл системы с гамильтонианом Н = Т).

ПОИСК



Топологические препятствия к существованию линейных интегралов

из "Симметрии,топология и резонансы в гамильтоновой механике "

Пусть Н = Т + V — гамильтониан обратимой системы, а Р = = - -Fo — ее линейный интеграл Рк — однородная форма по импульсам степени к). Ясно, что Я, F = Т, А + Т, о + V , Fl здесь слагаемые — однородные формы по импульсам степени 2, 1 и О соответственно. Функции Н и Г коммутируют, поэтому все эти формы равны нулю. Следовательно, Fo = О, а функция — интеграл обратимой системы (более того, — интеграл системы с гамильтонианом Н = Т). [c.150]
Эти функции независимы и коммутируют в том и только том случае, когда поля v, . Vk линейно независимы и коммутируют на М. Последнее вытекает из тождества Ff, Fj = у [г ,-, Vj. [c.151]
Теорема l[l]- Пусть М —связное, компактное, ориентируемое четномерное многообразие. Если гамильтонова натуральная система на Т М имеет к (dim М)/2 нез висимых линейных интегралов, находящихся попарно в инволюции, то х(М) 0. [c.152]
Из формулы (6.3) следует, что на сфере х = 2) поле симметрий имеет ровно две особые точки, а на торе х = 0) их вообще нет. [c.152]
На самом же деле 2Вь не является римановым многообразием, поскольку ds = О на границе Bh. Чтобы избежать этой трудности, надо сначала отступить от края Bh на небольшое расстояние в метрике Мопертюи, а уже затем произвести склейку. Детали доказательства можно найти в работе [1]. [c.153]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте