ПОИСК Статьи Чертежи Таблицы Основные законы и уравнения термодинамики. Первое начало термодинамики Уравнение первого начала термодинамики из "Термодинамика " Общее число термических и калорического уравнений состояния системы равно числу ее степеней свободы, т. е. числу независимых параметров, характеризующих состояние системы. Как показывает второе начало термодинамики, калорическое и каждое из термических уравнений состояния не являются независимыми. Они связаны дифференциальным уравнением в частных производных (см. 15). [c.30] Если калорическое и термические уравнения состояния известны, то с помощью начал термодинамики можно определить все термодинамические свойства системы. Вывести сами уравнения состояния на основе начал термодинамики нельзя они или устанавливаются из опыта, или находятся методами статистической физики. Это еще раз указывает, что термодинамика и статистическая физика дополняют друг друга и полностью отделить их невозможно. [c.30] При изучении свойств равновесных систем термодинамика прежде всего рассматривает свойства простых систем. Простыми называются системы с постоянным числом частиц, состояние которых определяется только одним внешним параметром а и температурой Т. Иначе говоря, простые системы — это однофазные системы, определяемые двумя параметрами. [c.30] Уравнения (1.3), (1.4) для идеального газа легко получить из молекулярно-кинетических представлений, даже не прибегая к общим статистическим методам. Так, закон (1.4) непосредс]-венно следует из того, что для системы из невзаимодействующих частиц (идеальный газ) внутренняя энергия равна (в среднем) сумме кинетических энергий этих частиц, которая не зависит от объема, занимаемого газом при данной температуре. [c.31] Объединяя законы Бойля — Мариотта и Гей-Люссака, Клапейрон в 1834 г. получил уравнение состояния идеального газа pV= T, где постоянная с для данной массы газа зависит от его природы. На основе тех же законов и закона Авогадро Д, И. Менделеев в 1874 г. установил уравнение состояния pV--(m M)RT, где постоянная R одна и та же для всех газов. [c.31] Как калорическое, так и термическое уравнения состояния для реальных газов могут быть теоретически выведены методами статистической физики. [c.32] Теорема о вириале устанавливает связь между средней кинетической энергией частиц системы, занимающей конечный объем V и некоторой функ1[исй сил (которая называется вириалом сил), действующих на эти частицы. [c.32] Экспериментально измеряя В[Т), можно определить параметры потенциальной функции взаимодействия. [c.33] Бойля сначала смещается в сторону больших давлений, а затем в сторону меньших давлений. При некоторой температуре, называемой температурой Бойля, минимум на изотерме совпадает с осью ординат (р = 0). Показать, что при температуре Бойля второй вириальный коэффициент реального газа равен нулю. [c.35] ОСНОВНЫЕ ЗАКОНЫ И УРАВНЕНИЯ ТЕРМОДИНАМИКИ. [c.36] Термодинамика—дедуктивная наука. Ее основные успехи могут быть охарактеризованы тем, что она позволяет получить множество различных соотношений между величинами, определяющими состояние тел, опираясь на весьма общие эмпирические законы—начала термодинамики. [c.36] Обсудим содержание этих основных законов и соответствующих им основных уравнений термодинамики. [c.36] Первое начало термодинамики является математическим выражением количественной стороны закона сохранения и превращения энергии в применении к термодинамическим системам. Оно было установлено в результате экспериментальных и теоретических исследований в области физики и химии, завершающим этапом которых явилось открытие эквивалентности теплоты и работы, т. е. обнаружение того, что превращение теплоты в работу И работы в теплоту осуществляется всегда в одном и том же строго постоянном количественном соотношении. [c.36] В 1748 г. М. В. Ломоносов в письме к Эйлеру, высказывая мысль о законе сохранения вещества и распространения его на движение материи, писал Тело, которое своим толчком возбуждает другое тело к движению, столько же теряет от своего движения, сколько сообщает другому . В 1755 г. Французская Академия наук раз и навсегда объявила, что не будет больше принимать каких-либо проектов вечного двигателя. В 1840 г. Г. Г. Гесс сформулировал закон с независимости теплового эффекта химических реакщ1й от промежуточных реакций. В 1842-1850 гг. многие исследователи (Майер, Джоуль и др.) пришли к открытию принципа эквивалентности теплоты и работы. [c.36] Установление принципа эквивалентности было последним этапом в формировании количественной стороны закона сохранения и преврагцения энергии, вследствие чего дата установления этого принципа обычно отождествляется с датой открытия первого начала термодинамики. [c.36] Из приведенной исторической справки видно, что потребовался ряд десятилетий, чтобы наука могла найти путь от простого убеждения о невозможности вечного двигателя до современной формы закона сохранения и превращения энергии. [c.36] В термодинамике рассматриваются два типа внешних воздействий воздействия, связанные с изменением внешних параметров системы (система совершает работу W), и воздействия, не связанные с изменением внешних параметров и обусловленные изменением внутренних параметров или температуры (системе сообщается некоторое количество теплоты Q). [c.37] По первому началу, изменение внутренней энергии dU при элементарном процессе перехода системы из одного состояния в бесконечно близкое есть полный дифференциал и, следовательно, конечное ее изменение U2 — Ui будет одним и тем же независимо от пути перехода системы из состояния 1 в 2 (рис. 2) — по пути, условно обозначенному а или Ь, но Q и W будут при этом разные. Это означает, что W и Q в отличие от U не являются функциями состояния системы, а характеризуют процесс, испытываемый системой, т. е. являются функциями от линии, или функционалами. То, что выражение для элементарной работы bW не является полным дифференциалом, устанавливается в общем случае на основе второго исходного положения термодинамики (см. задачу 1.2), а то, что дифференциальное выражение для 5g не есть полный дифференциал, непосредственно следует из уравнения первого начала (2.2). [c.37] Поскольку давление зависит не только от объема, но и от температуры, то при различных изменениях температуры на пути а или Ь при переходе из одного и того же начального состояния [pi, FiJ в одно и то же конечное [р2, У2) работа получается разной. Отсюда видно, что при замкнутом процессе (цикле) 1а2Ы система совершает работу, не равную нулю. На этом основана работа всех тепловых двигателей. [c.38] Из первого начала термодинамики следует, что работа может совершаться или за счет изменения внутренней энергии, или за счет сообщения системе количества теплоты. В случае если процесс круговой, начальное и конечное состояния совпадают, U2 — Ui=0 и W=Q, т. е. работа при круговом процессе может совершаться только за счет получения системой теплоты от внешних тел. [c.38] Вернуться к основной статье