Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Рассмотренные в предыдущей главе уравнения механики деформируемого тела вместе с условиями на поверхности образуют законченную формулировку задачи теории упругости в дифференциальной форме. Однако это не единственная возможная формулировка задачи об отыскании напряженно-деформированного состояния тела.

ПОИСК



Общие замечания

из "Основы теории упругости и пластичности "

Рассмотренные в предыдущей главе уравнения механики деформируемого тела вместе с условиями на поверхности образуют законченную формулировку задачи теории упругости в дифференциальной форме. Однако это не единственная возможная формулировка задачи об отыскании напряженно-деформированного состояния тела. [c.49]
Оказывается, задачу определения функций а, е я и, характеризующих это состояние, можно свести к определенному интегралу того или иного вида от этих функций, называемому функционалом, а сами функции, отражающие действительное состояние тела, найти из условия экстремума этого функционала. Математический аппарат такого подхода изучается в разделе математики, называемом вариационным исчислением. Поэтому положения, формулирующие свойства таких функционалов в теории упругости, получили название вариационных принципов. [c.49]
В данной главе прежде всего позпакомимся с двумя основными принципами — Лагранжа и Кастильяно, а также с некоторыми другими принципами. Укажем на связь этих принципов и вариационной формулировки задачи теории упругости с дифференциальной формой этой задачи. [c.49]
На основе вариационных принципов в механике твердых деформируемых тел строятся в настоящее время мощные приближенные методы анализа работы деформируемых тел и систем таких тел. Некоторые из них приводятся ниже и будут рассмотрены далее в гл. 8. Вариационные принципы широко используются в строительной механике. [c.49]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте