ПОИСК Статьи Чертежи Таблицы Классификация бытовых приборов определения времени из "Ремонт Часов " Приборы определения времени, применяемые в быту и технике, отличаются большим разнообразием не только конструктивных форм, принципиальных схем построения, но и принципами действия. Разнообразие конструктивных форм, схем и принципов построения приборов определения времени объясняется различным их назначением и условиями, в которых этим приборам приходится работать. [c.5] К этим группам относится подавляющее большинство приборов определения времени. В них для отсчета времени используются колебания различной частоты. [c.5] В бытовых часах для отсчета времени используются колебания маятника или баланса частотой от 0,5 до 3 гц. [c.5] Особенностью этих приборов является высокая точность отсчета времени при самых различных отсчитываемых промежутках. [c.6] Приборы данной группы получают все большее распространение как в технике, так и в быту. [c.6] Время измеряется путем регистрации периодически повторяющихся действий элементов приборов времени. [c.6] В современных приборах времени такие периодически повторяющиеся действия совершаются специальными элементами, способными при определенных условиях производить гармонические колебательные движения. [c.6] Для того чтобы уяснить работу часов, необходимо проследить за работой этих элементов. [c.6] На фиг. 1 показан пружинный маятник, с помощью которого можно пояснить гармоническое колебательное движение. Верхний конец пружины жестко закреплен, а к нижнему подвешен груз А. [c.6] Под действием груза пружина получит некоторое растяжение. [c.6] Если груз, находящийся в состоянии покоя, толчком пе реме-стить в направлении вертикали, как указано штриховой стрелкой, то груз переместится на некоторое расстояние. [c.6] Сила реакции пружины может быть столь значительной, что груз не только будет возвращен в ис.ходное положение, но и поднят выше. Груз, переместившись выше положения покоя, остановится в положении Б и под действием силы тяжести устремится опять вниз, вызвав при этом растяжение пружины, и вновь пройдет положение покоя и т. д. Под действием толчка возникает гармонический колебательный процесс перемещения груза на какой-то период времени. По мере прохождения времени путь перемещения груза будет уменьшаться и в конечном счете он займет положение, из которого был выведен толчком. Процесс затухания колебательного движения происходит в результате затраты энергии пружины на преодоление сопротивления воздуха перемещению груза и преодоление внутренней реакции самой пружины. [c.7] Затухание колебаний груза может и не произойти, если толчок или так называемый импульс силы, выводящий груз из состояния покоя, периодически будет повторяться. Если повторяющийся импульс силы по своей величине не будет превышать сил трения, противодействующих перемещению гру а, то в этом слз чае груз будет колебаться, перемещаясь между двумя точками — верхней Б и нижней В. [c.7] Путь перемещения пруза между этими точка.ми, или размах, принято называть амплитудой колебания. Время, прошедшее от начала перемещения груза до его возврата в исходную точку, принято называть периодом колебания Т. [c.7] Аналогичное явление можно наблюдать, если на одном конце нерастяжимой нити (фит. 2) подвесить небольшой груз Л, а второй конец закрепить неподвижной точке О. Нить под действием груза зай.мет вертикальное положение. На нить будет действовать сила тяжести Р. Такое состояние подвешенного груза называют состоянием покоя. Отведя груз на некоторый угол от положения покоя и отпустив его, последний начнет колебаться. [c.7] Совершив некоторое количество перемещений, груз остановится и займет исходное положение, т. е. положение покоя. Процесс пере.мещения груза будет гармоническим колебательным движением. [c.8] Импульсы, сообщаемые внешней силой, по своему значению должны быть равны затратам энергии на преодоление трения. В этом случае груз будет перемещаться между крайними установившимися точками, т. е. будет сохраняться его амплитуда колебания. [c.8] Рассмотренные колебания груза, подвешенного на нерастяжимой нити, известны в теории как колебания математического маятника (предполагается, что вес груза сосредоточен в одной точке). Такая схема удобна для анализа сущности процесса и вывода основных зависимостей. [c.8] В природе имеют место аналогичные системы с колебаниями тел, называемых физическим маятником. К таким телам, в частности, относятся маятники настенных и напольных часов. [c.8] Физическим маятником называется твердое тело, имеющее неподвижную горизонтальную ось (ось подвеса) и могущее под действием собственного веса совершать вокруг этой оси вращательные движения колебательного характера. [c.8] Вернуться к основной статье