ПОИСК Статьи Чертежи Таблицы Некоторые сведения о пространственном обтекании единичного крыла и решетки крыльев из "Прикладная газовая динамика. Ч.2 " В предыдущих параграфах рассматривалось обтекание крыла плоскопараллельным потоком жидкости. Такое течение может быть осуществлено только на крыле бесконечного размаха. [c.98] Опыты хорошо подтверждают описанную гидродинамическую схему крыла конечного размаха. Принимая во внимание действие сбегающих с концов крыла вихрей, удается установить влияние размаха крыла на его аэродинамические свойства. [c.99] Для крыла бесконечного размаха (К = °°) угол скоса равен нулю (Аа = 0), т. е. истинный угол атаки равен кажущемуся (а). Чем меньше относительный размах крыла Я, тем больше угол скоса потока и, следовательно, меньше истинный угол атаки. [c.100] В связи со скосом потока вектор подъемной силы крыла поворачивается на тот же угол Аа, так как его направление всегда перпендикулярно к истинному направлению потока (рис. 10.76). Проекция подъемной силы крыла конечного размаха ) на направление невозмущенного потока представляет собой силу так называемого индуктивного сопротивления-. [c.100] Таким образом, влияние конечного размаха крыла сказывается в появлении особого рода (индуктивного) сопротивления даже в случае обтекания крыла идеальной жидкостью. [c.100] Ввиду того что коэффициент подъемной силы пропорционален истинному углу атаки, выражение для коэффициента индуктивного сопротивления в дозвуковом потоке сжимаемого газа остается таким же, как в несжимаемой жидкости (при дозвуковой скорости вихри, сбегающие с концов крыла, по-прежнему оказывают влияние на поток вдоль всего размаха крыла). [c.100] При сверхзвуковом же обтекании возмущающее действие концевого сечения крыла распространяется только внутри конуса слабых возмущений с вершиной в передней кромке концевого сечения. Это приводит к существенному уменьшению индуктивного сопротив.лення, которое, вообще говоря, может быть сведено к нулю, если концы крыла срезать так, чтобы конусы возмущений, исходящие из передних кромок концевых сечений, не заключали внутри себя элементов крыла. В этом случае при сверхзвуковой скорости полета все сеченпя крыла будут обтекаться так же, как крыло бесконечного размаха. [c.100] Результаты экснеримента (рис. 10.78) действительно показывают, что ирц сохранении формы профиля крыла и его удлинения удается путем расположения крыла иод углом р = 40° к набегающему потоку существенно увеличить значение d jda в диапазоне шсел Маха 0,8—0,9. [c.101] Заметим, что при появлении на стреловидном крыле местной сверхзвуковой зоны течения, замыкаемой скачком уплотнения, последний является косым скачком, фронт которого приблизительно параллелен передней скошенной кромке крыла. Поэтому волновое сопротивление стреловидного крыла меньше, чем у прямого крыла. [c.102] Наличие составляющей скорости вдоль размаха стреловидного крыла вызывает перемещение в этом же направлении пограничного слоя. Это приводит к ухудшению обтекания и к уменьшению критического угла атаки у концевых профилей. На практике для устранения этого вредного влияния вязкости применяют гребешки —выступы, располагаемые вдоль хорды и препятствующие перетеканию пограничного слоя. [c.102] Рассмотрим теперь некоторые вопросы пространственного течения жидкости в лопаточных машинах. [c.102] В тех лопаточных машинах, венцы которых работают в практически безграничном потоке (воздушные и водяные винты, ветряки), с концов их лопаток, так же как и в единичном крыле конечного удлинения, сбегают присоединенные вихри. В результате возникает дополнительное индуктивное сопротивление, вычисление которого по сравнению с единичным крылом осложняется наличием взаимной интерференции между сбегающими с конца каждой лопасти вихревыми усами ). [c.102] Такого рода вихревые усы не могут возникнуть в турбомашинах других типов (осевые компрессоры и вентиляторы, осевые турбины), отличающихся тем, что их лопатки ограничены с торцов поверхностью кольцевого канала ). В результате этого индуктивное сопротивление или совсем не возникает, или оно имеет второстепенное значение. [c.102] Пространственный характер течения в лопаточных машинах рассматриваемого типа сказывается в основном в тех ограничениях возможного распределения параметров потока по высоте лопатки, которые налагаются, например, той или иной принятой формой поверхностей тока ). Трение на стенках кольцевого канала, особенно в области межлопаточных каналов, приводит к усилению влияния вязкости на характер пространственного течения. [c.102] Подробнее см., например, Гинзбург С. И. Элементы газовой динамики компрессоров и турбин (М. Гостехиздат, 1953), а также гл. IX во втором издании книги. [c.102] В качестве наиболее простого примера, имеющего непосредственное отношение к явлениям, происходящим при обтекании потоком вязкой жидкости неподвижных лопаточных каналов, рассмотрим обтекание решетки прямых (лопаток) постоянного профиля, ограниченных двумя параллельными плоскостями, нормальными к образующим (рис. 10.79). [c.103] В случае идеальной невязкой жидкости рассматриваемое течение является плоским. Это означает, что по всей высоте лопатки, в том числе и по плоскостям, ограничивающим решетку, имеется один и тот же двумерный ноток, не зависящий от величины удлинения к = 11Ъ лспаток, со ставляющих данную решетку. [c.103] Как уже указывалось, при безотрывном обтекании влияние вязкости ограничивается тонким поверхностным слоем. Вне этого слоя течение мало отличается от течения идеальной жидкости. Отсюда следует, что влияние вязкости почти не сказывается на течении в средних сечениях — оно остается практически невозмущенным. [c.103] Вернуться к основной статье