ПОИСК Статьи Чертежи Таблицы Профиль в плоском потоке несжимаемой жидкости из "Прикладная газовая динамика. Ч.2 " Рассмотрим сначала потенциальный поток несжимаемой жидкости. Тогда задача обтекания тела данной формы сводится к нахождению функции тока ф(а , у) и потенциала скорости ф(ж, у). [c.19] Отсюда видно, что на бесконечном удалении от окружности течение однородно и происходит со скоростью луь направленной вдоль осп X. [c.20] Таким образом, выражение (26) есть потенциал скоростей бесциркуляционного обтекания круга единичного радиуса однородным потоком, имеющим скорость wi, направленную вдоль оси х. [c.20] Для получения циркуляционного обтекания окружности наложим на рассмотренный выше поток чисто циркуляционное течение от единичного вихря, поместив его в начало координат, т. е. в центр окружности. Скорость, индуцированная точечным вихрем с циркуляцией Г, по величине равна Г/(2яг) и направлена всегда по нормали к радиусу-вектору. [c.21] В целях выяснения этого условия рассмотрим обтекание потоком несжимаемой жидкости профиля, имеющего острую заднюю кромку, наличие которой характерно для современных аэродинамических профилей. Предположим сначала, что циркуляция скорости отсутствует (Г = 0), т. е. нет подъемной силы. Получающаяся в этом гипотетическом случае картина так называемого бесциркуляционного обтекания профиля может быть построена известными методами теоретической гидродинамики. [c.22] Картина бесциркуляционного обтекания профиля обладает следующими основными особенностями. Набегающий поток разделяется у профиля на две части, обтекающие соответственно его верхнюю п нижнюю поверхности (рис. 10.8, а). Точка А, в которой струи разделяются и поток имеет нулевую скорость, называется передней критической точкой пли точкой раздела струй. Точка С, где струи вновь сходятся, называется точкой слияния струй или задней критической точкой. [c.22] ТОЧКИ разветвления струй в сторону носика, а точки слияния струй — в хвостовую часть профиля. [c.23] В общем случае ввиду невозможности обтекания острой задней кромки (гл. II, 11) такое течение сопровождается отрывом потока от поверхности профиля. Только при некотором частном значении угла атаки (обычно отрицательном) точка схода струй совпадает с задней кромкой профиля, т. е. получается безотрывное бесциркуляционное течение соответствующий угол атаки ао называется углом нулевой подъемной еилы. [c.23] Рассмотрим теперь другой крайний случай обтекания крыла — чисто циркуляционное обтекание. Под чисто циркуляционным течением будем понимать течение, обусловленное только наличием циркуляции вокруг профиля при отсутствии набегающего потока, когда и = О, Г 0. Примером чисто циркуляционного течения является рассмотренное в гл. II круговое течение, поле скоростей которого вызвано одиночным вихрем. В случае чисто циркуляционного течения отсутствуют передняя и задняя критические точки, и линии тока представляют собой замкнутые кривые, огибающие профиль. Такое течение независимо от значения циркуляции требует наличия бесконечной скорости в точке, лежащей на задней кромке профиля и, следовательно, так же как бесциркуляционное течение, не может быть реализовано без отрыва потока. [c.23] Общий случай плоскопараллельного обтекания крыла может быть получен наложением этих двух предельных случаев течения бесциркуляционного и чисто циркуляционного. Как можно убедиться из построения картины обтекания, в результате наложения на бесциркуляционное течение чисто циркуляционного течения задняя критическая точка прн положительном значении циркуляции (Г 0) сдвигается к хвостовой, а при отрицательном (Г 0) — к лобовой части профиля ). [c.23] Задавая циркуляцию Г, мы однозначным образом определяем положение задней критической точки при данном направлении бесциркуляционного течения, т. е. заданном направлении скорости вдалеке от профиля. [c.23] Очевидно, что при некотором вполне определенном значении циркуляции Г вокруг крыла задняя критическая точка совпадет с задней острой кромкой профиля (рис. 10.8, б). В этом единственном случае циркуляционное течение может быть физически реализовано безотрывным образом. При всех других значениях циркуляции требуется обтекание задней кромки, что, как указывалось, невозможно без отрыва потока. [c.23] Здесь положительным считается вращение по часовой стрелке. [c.23] Заметим, что рассмотренный выше частный случай безотрывного бесциркуляционного обтекания представляет собой пример выполнения условия Чаплыгина — Жуковского для режима Г =0. [c.25] Такое безотрывное бесциркуляционное течение (при Г = 0) является единственно возможным случаем, при котором бесциркуляционное течение реализуется в действительности в прочих случаях оно является лишь мысленной составляюш ей частью истинного течения, включаюгцего также и циркуляционный поток. [c.25] У симметричных профилей хорда совпадает с осью симметрии, вследствие чего угол нулевой подъемной силы ао = 0. Для дужки круга направление бесциркуляционного обтекания соответствует прямой, проходящей через заднюю кромку и середину профиля. [c.26] Заметим, что, как уже указывалось (гл. II), вследствие нереальности такого давления безотрывное обтекание становится невозможным, и с передней острой кромки пластины происходит срыв струй. Поэтому применение описанных выше математических методов для определения обтекания невязким потоком пластины или других профилей с острыми передней и задней кромками, строго говоря, носит несколько условный характер. Исключение составляет только случай обтекания профиля под таким углом атаки, при котором точка разветвления струй совпадает с острой передней кромкой ). В этом случае обе острые кромки, передняя и задняя, лежат на линии раздела потоков, обтекающих верхнюю и нижнюю стороны профиля, и струи жидкости плавно входят и сходят с него. [c.27] До сих пор мы рассматривали обтекание профиля идеальной жидкостью. Изложим некоторые соображения о влиянии вязкости. Вязкость жидкости вносит изменения в картину течения и приводит к различию между выводами теории потенциального обтекания профиля и экспериментальными данными. Влияние вязкости в случае хорошо обтекаемых тел сказывается лишь в тонком пограничном слое, вне которого движение можно считать потенциальным, т. е. безвихревым. [c.27] VI рассмотрено подробно обтекание с трением плоской пластины, расположенной параллельно направлению потока в этом случае давление в потоке практически не изменяется. При обтекании же вязкой жидкостью профиля давление около его поверхности существенно изменяется. Исходя из этого, все течение вблизи профиля следует разделить на два основных участка конфузорный участок, в котором скорость возрастает, а давление соответственно падает, т. е. градиент давления отрицателен ( р1йх 0), и диффузорный участок, в котором скорость падает, а давление возрастает, т. е. градиент давления положителен dpJdx 0). [c.27] Иногда этот угол называют углом атаки безударного обтекания. [c.27] Вернуться к основной статье