Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Если специальный принцип относительности справедлив для быстрых движений, то все законы механики должны быть инвариантны по отношению к преобразованиям Лорентца (9.39) или (9.40), вытекающим из них преобразованиям скоростей (9.48) и ускорений (9.53) и (9.54) и, наконец, преобразованиям сил (9.63) — (9.65), полученным в предыдущем параграфе. В частности, можно было бы показать (как это было сделано в 57 для медленных движений), что второй закон Ньютона сохраняет свою форму при переходе от одной инерциальной системы координат к другой и в случае быстрых движений. Однако в общем виде это доказательство требует применения специального математического аппарата, излагать который здесь было бы нецелесообразно. Поэтому мы вынуждены ограничиться только самыми простыми конкретными примерами и самыми общими замечаниями по вопросу об инвариантности законов механики.

ПОИСК



Силы и механике теории относительности , 66. Инвариантность законов механики

из "Физические основы механики "

Если специальный принцип относительности справедлив для быстрых движений, то все законы механики должны быть инвариантны по отношению к преобразованиям Лорентца (9.39) или (9.40), вытекающим из них преобразованиям скоростей (9.48) и ускорений (9.53) и (9.54) и, наконец, преобразованиям сил (9.63) — (9.65), полученным в предыдущем параграфе. В частности, можно было бы показать (как это было сделано в 57 для медленных движений), что второй закон Ньютона сохраняет свою форму при переходе от одной инерциальной системы координат к другой и в случае быстрых движений. Однако в общем виде это доказательство требует применения специального математического аппарата, излагать который здесь было бы нецелесообразно. Поэтому мы вынуждены ограничиться только самыми простыми конкретными примерами и самыми общими замечаниями по вопросу об инвариантности законов механики. [c.293]
Наиболее простыми примерами, иллюстрирующими инвариантность законов механики, являются задачи, в которых применяется не сам второй закон Ньютона, а вытекающие из него законы сохранения импульса и энергии, применяемые для решения задачи об ударе. Это и понятно, так как в задачах об ударе мы не рассматриваем сил и ускорений и пользуемся только лишь формулами преобразования скоростей, связь между которыми устанавливается на рсновании законов сохранения. Первым таким примером может служить задача об абсолютно неупругом ударе, рассмотренная в 59. Действительно, из закона сохранения импульса при этом рассмотрении была получена формула преобразования скоростей (9.14), которая представляет собой частный случай общей формулы (9.48), вытекающей из преобразований Лорентца — Эйнштейна. Следовательно, если бы мы шли по обратному пути, т. е. применили бы формулу (9.48) к преобразованию скорости при переходе от системы / к системе К, то убедились бы, что закон сохранения импульса соблюдается в системе К. [c.294]
Для того чтобы найти соответствующие компоненты в системе К, нужно воспользоваться формулами преобразования (9.49). Но из самого вида этих формул ясно, что равенства (9.73) и (9.74) остаются справедливыми для компонент скоростей u i и a xi, и х2 и й о и йй Ыу2 и в системе К. Следовательно, в системе К, так же как в системе К, при ударе дг-компоненты не изменяются, а у-компоненты меняют знак на обратный. А в таком случае, как было показано в 33, удовлетворяются законы сохранения импульса и энергии. [c.294]
Рассмотренные примеры, представляющие собой весьма частные случаи, не могут служить доказательством инвариантности второго закона Ньютона и законов сохранения по отношению к преобразованиям Лорентца, а являются лишь иллюстрацией этой инвариантности. Идея же наиболее общего метода доказательства инвариантности физических законов подсказана дальнейшим развитием представления об интервале. Как было показано ( 63), из относительных (неинвариантных по отношению к преобразованиям Лорентца) понятий расстояния между двумя точками и промежутка времени между двумя событиями может быть составлена комбинация — интервал, являющийся инвариантом по отношению к преобразованиям Лорентца. [c.295]
Наряду с интервалом могут быть образованы и другие инварианты, представляющие собой комбинации из неинвариантных физических величин. Наиболее важным примером таких инвариантов является определенная комбинация из импульса и энергии тела. Каждая из этих величин в отдельности не является инвариантом, а три компоненты вектора импульса и энергия тела определяют некоторую новую физическую величину, инвариантную по отношению к преобразованиям Лорентца. Применение подобных инвариантов не только упростило формулировку многих физических законов, но и облегчило доказательство их инвариантности. [c.296]
Важный вклад, внесенный в физику специальной теорией относительности, в том и состоит, что, с одной стороны, был вскрыт относительный характер некоторых физических понятий, которые классическая физика считала абсолютными, а с другой — был установлен абсолютный характер ряда новых физических понятий и доказан абсолютный характер физических законов, т. е. возможность формулировать эти законы таким образом, чтобы они были инвариантными по отношению к переходу от одной инерциальной системы отсчета к другой, также инерциальной. [c.296]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте