ПОИСК Статьи Чертежи Таблицы Образование дополнительных систем плоскостей проекций из "Курс начертательной геометрии Издание 22 " До сих пор мы встречались с двумя системами плоскостей проекций — V, Н к V, И, W. В случае необходимости можно образовать и другие системы. Например, введя в систему V, Н некоторую пл. 5ХЯ (рис. 35), мы получим помимо системы V, Н с проекциями а и о точки А еще систему 3, Н с проекциями йа и а той же точки А. [c.28] Н входит в обе системы V, Н и S, Н. Поэтому проекция а точки А (рис. 35) относится и к системе S, Н. При проецировании же точки А на пл. S получаем точку a на расстоянии a 2 от пл. Н, равном Аа и а 1. [c.28] На рис. 36 плоскости V, Н к S показаны совмещенными в одну плоскость — плоскость чертежа полученный при этом чертеж дан на рис. 37. Помимо оси VIH ) введена еще ось 8Ш она выбирается согласно условиям, вытекающим из задания, как это будет показано дальше. Из точки а проведена перпендикулярно к оси SIH линия связи, на которой отложен отрезок a 2, равный отрезку а 1, т. е. расстоянию в пространстве от точки А до пл. Н. [c.28] На рис. 38 показан чертеж, в котором помимо системы V, Н дана еще систёма У, Т, т. е. в систему F, Н введена дополнительная пл. Т, перпендикулярная к V. Теперь в обеих системах V, Н wV,T) содержится пл. V. Поэтому сохраняется расстояние точки А именно от пл. К и на чертеже отрезок 0/2 должен быть взят равным отрезку al. [c.29] как было сказано на стр. 21, предпочтительными являются построения, показанные на рис. 39 слева и на рис. 37 и 38. [c.29] В дальнейшем ( 33) мы встретимся еще с другими примерами введения дополнительных плоскостей для образования требуемой системы плоскостей проекций. [c.30] Для проекций, получаемых на дополнительных плоскостях проекций (например, на 5 или Т), мы применили обозначения с буквенным индексом, например, а , щ. В связи с этим уместно было бы и для проекций, например, а, а, а применить обозначения а, а , йщ, (рис. 41). Но для проекций на плоскостях Н,УиШ будем преимущественно применять традиционные обозначения, например, для точки А — а, а, а . [c.30] Вернуться к основной статье