Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Общие решения основных уравнений теории упругости — Га-леркина, Папковича, Нейбера и др. (см. [1], глава 4), в которые входят произвольные гармонические, бигармонические и тригармо-нические функции, трудно использовать при решении конкретных задач, так как не найдено общего метода определения указанных функций из рассмотрения граничных условий.

ПОИСК



Общие соображения

из "Руководство к решению задач прикладной теории упругости "

Общие решения основных уравнений теории упругости — Га-леркина, Папковича, Нейбера и др. (см. [1], глава 4), в которые входят произвольные гармонические, бигармонические и тригармо-нические функции, трудно использовать при решении конкретных задач, так как не найдено общего метода определения указанных функций из рассмотрения граничных условий. [c.8]
При строгой постановке задач теории упругости встречаются значительные математические трудности и решение может быть доведено до расчетных формул, пригодных для технических приложений, в ограниченном числе случаев. Поэтому широкое применение находят различные приближенные методы решения краевой задачи прикладной (технической) теории упругости, которым и посвящается настояп ая глава. [c.8]
Эти приближенные методы решения можно разбить на следующие группы. [c.8]
Первая группа методов характеризуется тем, что точные дифференциальные уравнения рассматриваемой задачи путем введения рабочих гипотез, основанных на физических соображениях и результатах эксперимента, заменяют приближенными. Одновременно упрощают и краевые условия, которые ставят в интегральной форме для определенных участков контура (например, вместо напряжений принимают усилия) или в локальной форме для отдельных линий сечения контура (например, в методе начальных функций, см. главу Vni). При указанной постановке задач, как правило, не удовлетворяются уравнения неразрывности деформаций. Применение этих методов к техническим задачам встречается в первых девяти главах настоящей книги. [c.8]
Ко второй группе приближенных методов относятся методы, связанные с вариационными принципами и называемые вариационными методами. Эти методы дают возможность получать систему расчетных уравнений рассматриваемой задачи, а также приближенное решение дифференциальных уравнений, не имеющих точного решения. [c.8]
Последний вопрос связан с выбором аппроксимирующих функций, удовлетворяющих краевым условиям задачи, что в известной мере является произвольным и влияет на получение окончательного результата. Не все вариационные методы допускают контроль характера (приближение сверху или снизу) и степени приближения к действительному решению. [c.8]
Исходные уравнения задачи и граничные условия, в том числе и неоднородные, удовлетворяются в отдельных точках или по от дельным линиям. [c.9]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте