ПОИСК Статьи Чертежи Таблицы Аморфные полупроводники из "Физика твердого тела " В 1956 г. Н. А. Горюнова й Б. Т. Коломиец обнаружили, что некоторые стекла на основе халькогенов (серы, селена, теллура) обладают полупроводниковыми свойствами. Установление этого факта, а также последующие фундаментальные работы А. Ф. Иоффе и А. Р. Регеля, А. И. Губанова, Н. Мотта и Э. Дэвиса послужили стимулом к развитию большого числа теоретических и экспериментальных исследований аморфных полупроводников. [c.360] В настоящее время ясно, что аморфные полупроводники можно разделить на три группы. [c.360] Рассмотрим основные свойства аморфных полупроводников. [c.360] Температурная зависимость электропроводности (на постоянном токе). Предположим, что плотность состояний в аморфном полупроводнике имеет вид, изображенный на рис. 11.6. В рамках этой модели плотности состояний следует различать три механизма проводимости. [c.360] Поскольку опыт показывает, что ао от температуры не зависит, следует ожидать, что подвижность носителей в нелокализованных состояниях изменяется обратно пропорционально температуре. [c.361] Общий вид зависимости проводимости в координатах In а от с учетом всех перечисленных механизмов переноса представлен на рис. 11.8. Область 1 соответствует переносу по нелокализо-ванным состояниям, 2 — по состояниям в хвостах зон, 3 п 3 — по локализованным состояниям вблизи уровня Ферми. При этом на участке 3 выполняется закон Мотта. Если плотность состояний, связанных с дефектами, велика, то следует ожидать, что не будет такого интервала температур, где процесс 2 был бы доминирующим. В этом случае участок 3 сразу переходит в участок 1. [c.362] На рис. 11.9 показаны некоторые типичные зависимости 1па от Г- для халькогенидных стекол, у которых Е изменяется от 0,3 до 1 эВ. [c.363] Здесь I — средняя длина свободного пробега ср — средняя скорость движения электрона. При Е Ес движение носителей имеет чисто зонный характер и описывается уравнением Больцмана. Здесь, как и в случае кристаллических полупроводников, / Х (Я, — длина волны электрона). [c.364] Если известна плотность состояний вблизи границы щели подвижности N E ), то число электронов с энергиями около с составляет. [c.364] как и ранее, во ЗбО Ом -см- . По оценкам Мотта при комнатной температуре io l2 см -В -с . Аналогичные выражения можно получить для дырок в валентной зоне. [c.364] Влияние примесей на электрические свойства аморфных полупроводников. Долгое время считалось, что аморфные полупроводники в отличие от кристаллических нечувствительны к введению в них примесей. Попытки легирования их атомами, которые в кристаллических полупроводниках являются донорами или акцепторами, не приводили к успеху. Одно из объяснений такого поведения было дано Губановым и несколько позднее Моттом. Оно сводится к тому, что в аморфных веществах может осуществляться такая перестройка связей, что все валентные электроны примесного атома будут участвовать в связях. Так, например, в кристаллическом кремнии атом фосфора образует четыре ковалентные связи. Пятый валентный электрон примесного атома в образовании связей не участвует. Предполагается, что в аморфном кремнии (или германии) атом фосфора окружен пятью атомами кремния (рис. 11.10). Если это так, то в аморфных полупроводниках не должны образовываться примесные уровни. [c.364] Здесь п — полная концентрация электронов Ап( с) — концентрация электронов в зоне проводимости. Из рис. 11.11 и выражения 11.15) следует, что примесную проводимость можно получить, если каким-либо способом удастся снизить плотность состояний в запрещенной зоне. Второй путь — ввести в полупроводник большое количество примесных атомов так, чтобы перекомпенсировать дефектные состояния. Все это, разумеется, возможно при условии, что примесные атомы образуют донорные (или акцепторные) уровни в запрещенной зоне. [c.365] В настоящее время для легирования аморфного кремния (и германия) кроме фосфора и бора используют также примеси мышьяка. сурьмы, индия, алюминия и т. д. При этом прямым методом было установлено, что координационное число атома мышьяка в аморфном кремнии, так же как и в кристаллическом, равно четырем. Кроме того, для получения слоев -типа в аморфный кремний с низкой плотностью состояний вводят атомы щелочных элементов, которые проявляют донорные свойства, находясь в междоузлиях. [c.366] Халькогенидные стеклообразные полупроводники менее чувствительны к введению в них примесей. Это связано с особеннностя-ми химических связей в этих материалах. В то же время исследования последних лет дают основание говорить о возможности изменять спектр локальных состояний в запрещенной зоне этих полупроводников путем введения примесных атомов. [c.367] Оптические свойства. Исследование оптических свойств кристаллических полупроводников дает обширную информацию об их зонной структуре. Данные об энергетическом спектре аморфных полупроводников также могут быть получены из оптических измерений. Первостепенная роль отводится при этом измерениям спектров поглощения. Спектры поглощения аморфных полупроводников удобно сравнить со спектром тех же материалов в кристаллическом состоянии. Это можно сделать в случаях германия, кремния, соединений селена и теллура. На рис. 11.14 в качестве примера приведен край спектра оптического поглощения аморфного кремния, который сравнивается с соответствующим спектром кристаллического кремния. Аналогичные данные получены для аморфного германия, арсенида и антимонида индия и некоторых других полупроводников. [c.367] Анализ кривых поглощения, снятых на различных кристаллических веществах, позволяет отметить следующее. [c.367] Это выражение аналогично по форме соответствующему выражению для коэффициента поглощения при непрямых переходах в кристаллических полупроводниках. Измерив коэффициенты поглощения при v Vo и в области v vo, можно определить оптическую ширину запрещенной зоны Eg. Величина Eg соответствует тому значению энергии, при котором зависимость In а от hv перестает быть линейной функцией Tiv. [c.368] Вернуться к основной статье