Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама
Коэффициент полезного действия механизма всегда зависит от характера сил трения, которые возникают в кинематических парах, от вида смазки и т, д, Поэтому нельзя точно указать для тех или иных механизмов их коэффициенты полезного действия. В каждом отдельном случае этот вопрос должен подлежать теоретическому и экспериментальному анализу. В дальнейшем мы рассмотрим только некоторые расчетные приемы, которые могут быть применены для решения этих вопросов. Начнем с рассмотрения механизма с низшими парами.

ПОИСК



Определение коэффициентов полезного действия типовых механизмов

из "Теория машин и механизмов "

Коэффициент полезного действия механизма всегда зависит от характера сил трения, которые возникают в кинематических парах, от вида смазки и т, д, Поэтому нельзя точно указать для тех или иных механизмов их коэффициенты полезного действия. В каждом отдельном случае этот вопрос должен подлежать теоретическому и экспериментальному анализу. В дальнейшем мы рассмотрим только некоторые расчетные приемы, которые могут быть применены для решения этих вопросов. Начнем с рассмотрения механизма с низшими парами. [c.313]
Относительная скорость ползуна 5 по направляюш,ей а равна скорости Vq. М0Щ.Н0СТИ, затрачиваемые на трение в кинематических парах, равны (см. 47) f та а I 1. Рв = Ргв в 1 211. Рс = Р сГс I 32 I. Ри = Pti/d I 3 . Ре = 42 . Pq = = Р аГа I 0)41 и Рц = F uVq. [c.315]
Построив график изменения мощности Р за один полный цикл движения механизма, можно определить среднее значение Ре. ср мощности, затрачиваемой на трение. Далее по заданным силам производственных сопротивлений определяют мощность Рц.с, затрачиваемую на преодоление этих сопротивлении в каждый данный момент времени, и по графику изменения этой мощности находят среднее значение Рц, с. моншости сил производственных сопротивлений. [c.315]
Величина F.j силы трения скольжения равна Ft = /f i. где F21 — сила давления зуба колеса 1 на зуб колеса 2 в предположении, что давление воспринимается одной парой зубьев и направлено по нормали п — п к профилям зубьев, / — коэффициент трения. Величина силы fo] может быть определена обычными методами кинетостатики, указанными выше (см. 55). [c.316]
Только что выведенные формулы применяются также для приближенного определения коэффициента полезного действия винтовых и червячных механизмов. В случае передачи от червяка к колесу применяется формула (14.25), а в случае передачи от колеса к червяку —формула (14.26). Все следствия, вытекающие из этих формул для наклонной плоскости, остаются действительными и для винтовых и червячных механизмов. [c.319]
Моменты, входящие в уравнение (14.27) и (14.28), могут быть всегда выражены через окружные усилия на колесах н радиусы колес. Для этого рассмотрим в отдельности равновесие каждого из звеньев, входящих в состав механизма. [c.320]
Составим схему (рис. 14.9, б) для каждого звена редуктора в профильной плоскости. На колесо 1 действуют момент и сила / 12 от колеса 2. На звено, состоящее из сателлитов 2 w 2, — сила F i от колеса /, сила Ргл от колеса 3 и сила F-2h от водила Н. На водило Я действует момент и сила от звена, состоящего из сателлитов. Наконец, на колесо 3 действуют момент УИд и сила Fz2 от звена, состоящего из сателлитов. Углами наклона реакций в высших парах можно пренебречь ввиду их несущественного влияния на коэффициент полезного действия передачи. [c.320]
Мощность Рт может быть подсчитана по мощности в зацепления, т. е. по величине мощности Р (см. формулу (14.38)), передаваемой редуктором в обран1енном движении всего механизма относительно водила Н. [c.321]


Вернуться к основной статье

© 2025 Mash-xxl.info Реклама на сайте