ПОИСК Статьи Чертежи Таблицы Два режима течения вязкой жидкости из "Динамика вязкой несжимаемой жидкости " В предшествующих главах изучались упорядоченные течения вязкой несжимаемой жидкости, которые получили название ламинарных течений. Общая особенность течений такого рода заключалась в том, что траектории всех частиц жидкости представляли собой плавные кривые, а поле скоростей и давлений было непрерывным как в отношении пространственных координат, так и в отношении времени. Для этих течений принималось, что внутреннее трение частиц жидкости подчиняется гипотезе Ньютона и что закономерности этих течений полностью могут быть изучены на основании полных дифференциальных уравнений движения вязкой несжимаемой жидкости или приближённых уравнений, но полученных из полных с помощью отбрасывания отдельных слагаемых. [c.433] Ламинарное движение в трубке осуществляется при небольших перепадах давления, и по мере увеличения перепада давления характер течения жидкости может измениться. При движении жидкости при больших перепадах давления в трубке осуществляется особый режим. течения, получивший позднее название турбулентного. Основная особенность турбулентного режима течения вязкой жидкости заключается в беспорядочном характере траекторий частиц жидкости и в наличии беспрерывных относительных перемещений частиц, позднее названных пульсациями. [c.433] Упоминаемый в этом абзаце метод замены истинного беспорядочного движения частиц прямолинейным фиктивны.м движением основан на использовании особого математического приёма осреднения, который теперь получил широкое распространение при изучении турбулентного движения. [c.434] Более полное выяснение различия признаков ламинарного и турбулентного режимов течения жидкости и условий перехода течения из одного режима в другой было проведено в работе О. Рейнольдса 1). [c.434] На основании результатов своих опытов с окрашенными струйками Рейнольдс показал, что ламинарный режим течения вязкой жидкости в цилиндрической трубе осуществляется только до тех пор, пока безразмерный параметр течения, названный позднее числом Рейнольдса, не будет превышать своего критического значения. Если же этот параметр превысит своё критическое значение, то течение вязкой жидкости из ламинарного режима внезапно, скачком переходит в турбулентный режим при этом скачком меняется и зависимость коэффициента сопротивления от значений числа Рейнольдса. [c.434] Для турбулентного режима течения вязкой жидкости в цилиндрической трубе соответственными необходимыми признаками будут 1) извилистый и неупорядоченный характер траекторий отдельных частиц, 2) почти равномерное распределение осредненных скоростей по поперечному сечению, но с резким уменьшением их до нуля в тонком слое вблизи стенки, 3) превышение максимальной скорости над средней имеет порядок 10—20% и 4) график зависимости коэффициента сопротивления от числа Рейнольдса представляется кривой с медленно убывающим наклоном. Как показано на рис. 31, при переходе через критическое значение числа Рейнольдса коэффициент сопротивления трубы увеличивается скачком, а затем медленно уменьшается с увеличением числа Рейнольдса. [c.435] Как уже отмечалось раньше, необходимые признаки ламинарного течения в круглой трубе установлены не только на основании результатов опытов, но и на основании результатов решения дифференциальных уравнений движения вязкой несжимаемой жидкости с удовлетворением граничным условиям прилипания частиц жидкости к стенкам. Что же касается перечисленных необходимых признаков турбулентного движения в трубе, то они пока установлены только на основании экспериментальных наблюдений и измерений. Среди исследователей, занимающихся вопросами течений жидкости, широко распространено мнение, что указанные признаки турбулентного режима течения в трубе нельзя получить в результате решения краевой задачи на базе общих дифференциальных уравнений движения вязкой жидкости, в основе которых лежит гипотеза Ньютона о силе вязкости и гипотеза о сплошности среды и непрерывности изменений скоростей частиц. Извилистый и неупорядоченный характер траекторий отдельных частиц побудил ряд исследователей отказаться от непосредственного использования дифференциальных уравнений движения вязкой жидкости для изучения турбулентных течений и стать на путь видоизменения этих уравнений с помощью математического метода осреднения ряда величин и введения в связи с этим методом новых неизвестных величин. [c.435] Основным методом изучения закономерностей турбулентного движения ещё и до сих пор служит экспериментальный метод различные теории турбулентности играют пока лишь вспомогательную роль. В предшествующих главах было показано, что отдельные случаи ламинарных течений могут быть изучены с помощью решения соответственных краевых задач либо на основе точных уравнений движения вязкой жидкости, либо на основе приближённых уравнений, полученных из точных с помощью отбрасывания групп отдельных слагаемых. При этом решения задач включали в себе коэффициент вязкости жидкости и параметры самой задачи и не содержали в себе какие-либо произвольные постоянные, за определением которых необходимо было обращаться к отдельным опытам, воспроизводящим рассматриваемую задачу. Существующие же теории турбулентности ещё не позволяют отдельные случаи турбулентных движений изучать с помощью решения краевых задач на основе каких-либо дифференциальных уравнений. [c.437] В теоретических изысканиях по вопросу о турбулентном движении жидкости можно обнаружить три направления. В работах первого направления исследование ограничивается только составлением общих дифференциальных уравнений турбулентного движения и общим указанием возможности уравнять число уравнений и соотношений с числом неизвестных. В работах второго направления изучается внутренняя структура турбулентных течений. Наиболее многочисленны и плодотворны по своим результатам работы третьего направления, в которых сами теоретические изыскания элементарны и ограничены весьма частными предположениями, но доведены до конкретных результатов, согласующихся с результатами измерений при соответственном выборе значений некоторых постоянных. Благодаря теории подобия введённые постоянные могут носить в известных рамках универсальный характер, т. е. результаты решений одной группы задач могут быть перенесены с теми же значениями постоянных на другие группы при условии выполнения критерия подобия течений. Работы третьего направления составляют так называемые полуэмпирические теории турбулент ности. [c.437] Вернуться к основной статье