ПОИСК Статьи Чертежи Таблицы Сопротивление жидкостей движущимся в них телам из "Гидроаэромеханика " Ньютон представлял себе, что среда, в которой движется тело, состоит из свободно парящих , неподвижных частиц, которые при столкновении с телом отражаются от него по законам упругого удара, что и приводит к возникновению сопротивления. Однако теперь мы знаем, что такая теория неверна. Согласно современной теории сопротивления, называемой часто гидродинамической, сопротивление жидкости движущемуся в ней телу является результатом разностей давлений и касательных напряжений, возникающих при обтекании тела. Принципиальная разница между новой и старой теориями состоит в следующем старая теория учитывает только форму той части поверхности тела, которая обращена в сторону движения, между тем как новая теория показывает, что причиной сопротивления являются главным образом процессы, происходящие позади движущегося тела, и что поэтому форма кормовой части тела имеет очень большое влияние на величину сопротивления. Необходимо также подчеркнуть, что, согласно старой теории. [c.239] Поэтому, вместо того чтобы подсчитывать сопротивление, как это делали раньше, по формуле. [c.241] Следовательно, новые коэффициенты сопротивления в два раза больше старых. Они обозначаются обычно буквой с, в случае необходимости — с индексами для составляющих сопротивления. [c.241] Что касается величины коэффициента сопротивления, то соображения о механическом подобии позволяют сказать следующее. До тех пор, пока сравниваются только геометрически и механически подобные случаи, при которых число Рейнольдса R = есть какая-нибудь характерная длина) сохраняет постоянное значение, отношение разностей давлений к напряжениям трения остается постоянным поэтому касательные напряжения изменяются в сравниваемых случаях пропорционально разностям давлений, которые, в свою очередь, могут быть приняты пропорциональными динамическому давлению. Таким образом, приведенная выше форма закона сопротивления, т.е. [c.241] Разложим силу, с которой жидкость действует на каждый элемент поверхности движущегося тела, на нормальную и касательную составляющие, т.е. на силу давления и на силу трения. [c.242] Небольшие изменения формы корабля и его скорости очень сильно отражаются на волновом сопротивлении при удлинении корпуса корабля оно может и увеличиться, и уменьшиться, смотря по тому, будет ли кормовая волна, интерферирующая с системой носовых волн, усиливать или ослаблять эту систему. Сопротивление увеличивается, если корма попадает в одну из впадин носовой системы волн, и, наоборот. [c.243] Работа, производимая кораблем для преодоления волнового сопротивления, преобразуется в кинетическую энергию волн, возникающих при движении корабля. Другая часть сопротивления давления, соответствующая обычному сопротивлению давления тела, окруженного жидкостью со всех сторон, вместе с сопротивлением трения имеет своим эквивалентом количество движения вихрей, образующихся в кильватерном потоке поэтому указанная вторая часть сопротивления давления часто называется кильватерным сопротивлением. Работа, затрачиваемая на преодоление кильватерного сопротивления, преобразуется частично в теплоту, а частично в кинетическую энергию кильватерных вихрей, которая затем постепенно также преобразуется в теплоту. [c.244] Сопротивление трения и кильватерное сопротивление следуют закону подобия Рейнольдса (если не принимать во внимание возмущений, вносимых волнами) волновое же сопротивление следует закону Фруда. Создать условия при испытании модели корабля, удовлетворяющие одновременно этим двум законам, невозможно. Так как для кораблей основную роль играет волновое сопротивление, то при испытании моделей кораблей соблюдают закон Фруда, зависимость же других сопротивлений от масштаба модели учитывают путем внесения поправок, устанавливаемых опытным путем. [c.244] Экспериментальное определение сопротивления тел, движущихся в воздухе, удобнее производить на неподвижных моделях, обтекаемых потоком воздуха. Для этой цели устраиваются специальные аэродинамические трубы (см. 22). Для того чтобы результаты, полученные в таких трубах, можно было с уверенностью переносить на движущиеся тела, необходимо принимать тщательные меры для обеспечения возможно большей равномерности воздушного потока. О турбулентности в аэродинамических трубах см. также 5, п. g). [c.245] Вернуться к основной статье