ПОИСК Статьи Чертежи Таблицы Движение жидкости, лишенной трения, с вращением часВихревые нити из "Гидроаэромеханика " Подобного рода воронки часто наблюдаются в реках, в ваннах (при спуске воды) и т. д. Во всех таких случаях мы имеем дело с потоками, в которых циркуляция уже существует и вызвана какими-то посторонними причинами. [c.104] Если движение начинается из состояния покоя, то, согласно теореме Томсона, в получившемся потоке циркуляция не может возникнуть даже в том случае, когда движение происходит в многосвязной области. [c.104] В самом деле, в состоянии покоя циркуляция вдоль всякой замкнутой кривой равна нулю, поэтому она должна остаться равной нулю и после начала движения. В действительности же циркуляция, как правило, возникает, и причиной этого является образование поверхности раздела. Так, например, в спиральной камере, изображенной на рис. 36, в первый момент начала движения образуется на остром ребре к поверхность раздела, из которой возникает вихрь такого же вида, как на рис. 43. В дальнейшем вихрь отрывается от ребра и уплывает вместе с потоком, но вызванная им циркуляция остается в потоке на все время. Совершенно аналогичная картина наблюдается и при движении крыла. В начале движения поток под крылом огибает заднюю кромку крыла снизу вверх (рис. 64), вследствие чего здесь образуется поверхность раздела, превращающаяся в вихрь (рис. 66). В дальнейшем вихрь отрывается от крыла и уплывает вместе с потоком, но оставляет в нем циркуляцию, равную по абсолютной величине своей циркуляции, но противоположно направленную. При этом вдоль жидких линий, заключающих внутри себя крыло и вихрь вместе, циркуляция остается равной нулю, как этого и требует теорема Томсона. [c.105] Для того чтобы от присутствия крыла область пространства сделалась двухсвязной, необходимо, чтобы крыло с боков было ограничено двумя параллельными стенками или чтобы крыло простиралось в обе стороны до бесконечности. Для действительных крыльев ни одно из этих условий не соблюдается. Тем не менее циркуляция, без которой не может получиться подъемная сила, возникает и в этом случае. Она возникает вследствие отрыва вихрей, образующихся из поверхности раздела с поперечным скачком скорости (рис. 46). Подробнее об этом будет сказано в 15 гл. III. [c.105] До изобретения нарезных артиллерийских орудий часто случалось, что шаровые снаряды после вылета из ствола значительно отклонялись в сторону от той траектории, по которой они должны были бы лететь. Магнус показал, что причиной такого поведения снаряда служило вращение вокруг поперечной оси, которое шаровой снаряд получал вследствие случайных причин. На основании сказанного выше это создавало условия, необходимые для возникновения поперечной силы, которая и вызывала нежелательное отклонение снаряда от намеченной траектории. Такие же боковые отклонения, часто очень значительные, наблюдаются и при полете срезанного мяча при игре в теннис или гольф. Несколько лет тому назад А. Флеттнер (Flettner) использовал эффект Магнуса для приведения в движение корабля энергией ветра, причем вместо парусов он установил вертикальные быстро вращающиеся цилиндры (роторы). На концах цилиндров помещались выступающие круглые диски (рис. 67), так как иначе воздух, расположенный выше и ниже цилиндра, засасывался в область потока с пониженным давлением и, возмущая поток, уменьшал поперечную силу. Испытания показали техническую пригодность такого роторного корабля, но в экономическом отношении он оказался менее выгодным обычных моторных судов и поэтому не получил дальнейшего применения. [c.106] Можно произвести также следующий опыт. [c.107] Приведем в быстрое вращение легкий цилиндр, расположив при этом его ось горизонтально, и предоставим цилиндру падать. Мы увидим, что вместо того, чтобы упасть вертикально вниз, цилиндр начнет планировать по довольно пологой траектории. При таком движении (рис. 68) на цилиндр, кроме подъемной (поперечной) силы А, перпендикулярной к направлению движения, действует еще сопротивление Ш, направленное против движения, которое, однако, в случае длинного и узкого цилиндра и при наличии боковых дисков значительно меньше, чем подъемная сила. Равнодействующая этих обеих сил уравновешивает вес цилиндра и тем самым замедляет его падение. [c.107] Рассмотрим теперь, что происходит с очень маленькими замкнутыми жидкими линиями. Если эти линии лежат в области потенциального движения, то циркуляция вокруг них равна нулю. Если же они находятся внутри вихревой нити, то в общем случае циркуляция вокруг них не равна нулю, причем, согласно теореме Томсона, она все время остается постоянной. Отсюда непосредственно следует, что вихревая нить состоит все время из одних и тех же частиц жидкости. Так как количество движения и энергия самой вихревой нити малы по сравнению с количеством движения и энергией окружающего потенциального потока, то движение вихревой нити в основном управляется движением потенциального потока (см. ниже, пример первый). Правда, геометрически потенциальное движение можно свести к циркуляции вокруг оси вихревой нити, что для расчетов обычно удобнее. При таком представлении движение каждого элемента вихревой нити обусловливается влиянием всех остальных элементов нити, а все потенциальное движение вызывается вихревой нитью. Однако такое представление следует рассматривать только как геометрическое. С точки зрения энергетической преобладающее влияние на движение вихревой нити оказывает внешнее движение. [c.109] Следовательно, в тех местах, где поперечное сечение вихревой нити меньше, угловая скорость вращения больше, и наоборот. Такая же связь между F и го существует и во времени если какой-либо отрезок вихревой нити вытягивается, то угловая скорость вращения возрастает обратно пропорхщонально поперечному сечению. При этом длина отрезка вихревой нити увеличивается также обратно пропорционально поперечному сечению, так как объем нити остается неизменным. Следовательно, угловая скорость вращения нити изменяется в точности пропорционально изменению длины отрезка нити. [c.109] Указанные факты и составляют основное содержание теорем Гельмгольца. Рассмотрим несколько примеров движения вихревых нитей. [c.110] Для того чтобы взаимодействие прямолинейных параллельных вихревых нитей происходило в точности так, как указано выше, эти нити теоретически должны простираться в обе стороны до бесконечности или же они должны быть ограничены двумя параллельными стенками. Однако в последнем случае на движение вихревых нитей влияет трение, возникающее на стенках. Одна из параллельных стенок может быть заменена свободной поверхностью жидкости (следовательно, вторая стенка должна быть дном сосуда). [c.111] Вернуться к основной статье