ПОИСК Статьи Чертежи Таблицы Описание устройства и работы рубинового оптического квантового генератора из "Оптика " Для создания активной среды необходимо селективное возбуждение ее атомов, обеспечивающее инверсную заселенность хотя бы одной пары их энергетических уровней. Возможны различные способы создания -инверсной заселенности. Поскольку в предшествующем изложении подробно обсуждались процессы излучения и поглощения света, начнем с описания оптического метода селективного возбуждения атомов среды ). Примером оптического квантового генератора, в котором используется оптический метод возбуждения, может служить рубиновый лазер. Отметим, что этот генератор был исторически первым квантовым генератором, излучающим в видимой области спектра (Мейман, 1960 г.). [c.784] Рубин представляет собой кристалл окиси алюминия АБОз (корунд), в который при его выращивании введена окись хрома СгоОд обычно в количестве нескольких сотых долей процента. Окись хрома изоморфно входит в кристаллическую решетку корунда. В результате введения примеси ионов хрома прозрачный кристалл корунда приобретает розовую окраску. В спектре белого света, прошедшего через кристалл рубина, легко заметить две широкие полосы поглощения, расположенные в зеленой и фиолетовой областях спектра. Поглощение в этих участках спектра и определяет розовую окраску рубина. [c.784] Изучение люминесценции рубина позволило составить следующее схематическое представление о механизме ее возникновения и об энергетических уровнях ионов хрома, введенных в кристаллическую решетку кристаллов корунда. На рис. 40.5 широкими полосами показаны энергетические уровни ионов хрома и Переходы на них из основного состояния соответствуют упомянутым выше широким полосам поглощения кристалла рубина в видимой области спектра. Процессы поглощения энергии света ионами хрома си.мволически представлены стрелками, направленными от нормального нижнего энергетического уровня ионов Е к верхним уровням 3, 3. В результате поглощения света ионы хрома переходят с нижнего уровня на верхние. Длительность существования т этих возбужденных состояний ионов хрома мала и составляет примерно 10 с. [c.785] Описанная схематически структура энергетических уровней ионов хрома в кристаллах рубина и длительное существование возбужденного состояния с энергией благоприятствовали созданию первого оптического квантового генератора. [c.786] Красную световую вспышку. Площадь поперечного сечения светового пятна на экране при этом практически не зависит от расстояния (в пределах десятка метров) между рубином и экраном. [c.787] Для освещения рубинового стержня применяются ксеноновые газоразрядные лампы, через которые разряжается батарея высоковольтных конденсаторов. Емкость такой батареи конденсаторов порядка 1000мкФ, и заряжается она до напряжения в 2—3 кВ. На рис. 40.6 показана батарея конденсаторов С, включенная параллельно лампе 2, но блок зарядки конденсаторов и устройство для быстрого их включения параллельно лампе не изображены. [c.787] Спектры светового импульса ксеноновой лампы и рубинового лазера совершенно различны. Ксеноновая лампа излучает импульс света со сплошным спектром, рубиновый лазер генерирует красную спектральную линию с длиной волны 694,3 нм и шириной около 0,025 нм (и меньше). Энергия светового импульса рубинового лазера сравнительно невелика и составляет несколько джоулей. Но, так как длительность импульса порядка миллисекунды, мощность лазерного импульса достигает нескольких киловатт ). О способах значительного ее повышения будет сказано ниже. [c.788] Как уже отмечалось в 225, оптический резонатор лазера обеспечивает коллимацию (направленность) излучения, выходящего из лазера. Хотя при использовании рубиновых стержней трудно достичь дифракционного предела углового раскрытия Х/Д излучаемого светового конуса, но, тем не менее, можно получить расходимость светового пучка, не превыщающую нескольких угловых минут. Это значит, что на экране, расположенном на расстоянии километра от лазера, диаметр поперечного сечения светового пучка составит примерно метр без применения каких-либо фокусирующих оптических систем. [c.788] Необходимо подчеркнуть пространственную когерентность излучения в сечении лазерного светового пучка, тесно связанную с его расходимостью (см. 22). Если на пути лазерного светового пучка расположить две узкие параллельные щели, прорезанные в непрозрачном экране, т. е. осуществить схему интерференционного опыта Юнга (см. 16), но без первой входной щели, то на экране, поставленном за этими щелями, можно наблюдать интерференционную картину с высокой видимостью (контрастностью) ее полос. Это значит, что излучение лазера пространственно когерентно. [c.788] Рубиновый лазер может давать линейно-поляризованное излучение без помощи какого-либо поляризатора. Если рубиновый стержень лазера вырезан из кристалла рубина таким образом, что оптическая ось кристалла перпендикулярна к оси стержня или составляет с ней угол 60 , то излучение линейно-поляризовано, причем вектор индукции О перпендикулярен плоскости главного сечения кристалла. [c.788] Рассмотрим некоторые способы повышения мощности излучения импульсного рубинового лазера. Так, можно увеличивать длину и повышать качество рубинового кристалла, а также мощность его оптического возбуждения. Это дает несомненные положительные результаты и позволяет повысить мощность излучаемого импульса примерно на один порядок при неизменной его длительности. [c.789] Другая возможность повышения мощности лазерного импульса основана на совершенно иных соображениях. Мощность импульса пропорциональна его энергии й, деленной на длительность импульса Ат. Поэтому, если при данном значении энергии импульса сократить его длительность, то мощность импульса повысится. Изложим один из методов сокращения длительности импульса излучения, получивший название метода модулированной добротности. [c.789] Выше неоднократно подчеркивалось значение резонатора для самовозбуждения генерации лазера. Генерация начинает развиваться, как только инверсная заселенность примет пороговое значение, определяемое потерями энергии в резонаторе. Поэтому целесообразно иметь большие потери на первом этапе освещения кристалла с тем, чтобы задержать начало развития генерации и накопить в освещенном кристалле более высокую концентрацию возбужденных ионов хрома. Можно расположить перпендикулярно пучку только одно зеркало, а другое зеркало или призму полного отражения (рис. 40.9) вводить в рабочее положение лишь после того, как будет достигнута высокая инверсная заселенность. [c.789] В момент правильной ориентации зеркала или призмы лавинообразно нарастает амплитуда импульса индуцированного излучения, получающего почти всю энергию, запасенную в активной среде, и имеющего длительность порядка 10 — 10 с. [c.789] Существует несколько способов импульсного уменьшения потерь. Призму полного внутреннего отражения вращают вокруг оси, перпендикулярной к ребру А и лежащей в плоскости чертежа (на рис. 40.9 она показана пунктиром), с угловой скоростью около 500 об/с. Начальную фазу вращения подбирают таким образом, что призма занимает рабочее положение через заданный промежуток времени после включения ксеноновых ламп, когда инверсная населенность уровней ионов хрома велика. [c.790] Срезы торцов рубинового стержня, используемого в данном случае, делаются косыми и, разумеется, неметаллизированными для того, чтобы при высокой инверсной заселенности уровней, т. е. при высоких значениях коэффициента усиления, сам кристалл не стал оптическим резонатором. [c.790] Таким образом, повышение мощности лазерного импульса достигается сокращением его длительности за счет специального приема включения в работу оптического резонатора. Описанный метод сокращения длительности импульса до 10 с (правда, при некоторой потере его энергии ) дает возможность получить импульсы с мощностью 10 Вт. [c.790] Как нетрудно понять, изменение ориентации призмы изменяет добротность оптического резонатора. Поэтому описанный метод формирования коротких мощных импульсов получил наименование модуляции добротности оптического резонатора. Лазеры, работающие в таком режиме, называются лазерами с модулированной добротностью. Соответственно условия работы лазера с неизменной во времени добротностью называют режимом свободной генерации. [c.790] Значительно более быструю модуляцию добротности резонатора можно осуществлять, используя электрооптические затворы (см. 152). Действие этих затворов основано на практически безынерционном изменении или возникновении оптической анизотропии некоторых жидкостей и кристаллов под действием электрического поля. Относящийся к явлениям этого типа эффект Керра описан в 152. С этой же целью применяется и другое электрооптическое явление, так называемый эффект Поккельса, возникающий в кристаллах и столь же малоинерционный, как и эффект Керра. [c.790] Заканчивая описание лазеров с оптическим возбуждением кристалла, сделаем некоторые замечания общего характера относительно применения этого метода создания активной среды. [c.791] Вернуться к основной статье