ПОИСК Статьи Чертежи Таблицы Профильное сопротивление крыла. Разложение профильного сопротивления на сопротивление трения и сопротивление давлений. Обратное влияние пограничного слоя на распределение давлений по поверхности обтекаемого профиля из "Механика жидкости и газа " Изложенные в предыдущих параграфах упрощенные методы расчета турбулентного пограничного слоя позволяют с достаточной для практики точностью рассчитать отнесенное к единице длины вдоль размаха сопротивление цилиндрического крыла при плоском его обтекании безграничным потоком. Эго сопротивление крылового профиля называют профильным сопротивлением. [c.638] Профильное сопротивление крыла конечного размаха можно получить, складывая профильные сопротивления плоских сечений крыла (в смысле, разъясненном в гл. VII). Полное лобовое сопротивление крыла конечного размаха равно сумме профильного и индуктивного его сопротивлений. На режиме максимальной скорости самолета индуктивное сопротивление крыла, пропорциональное квадрату коэффициента подъемной силы, невелико, и главную часть лобового сопротивления крыла составляет его профильное сопротивление (вспомнить диаграмму сопротивлений, показанную на рис. 155, и разъяснения к ней, изложенные в 74 гл. VII). [c.638] Прежде чем перейти к изложению методов расчета профильного сопротивления, введем понятие о двух основных составляющих профильного сопротивления сопротивлении трения и сопротивлении давлений. [c.638] Все силы, приложенные к элементам поверхности крыла со стороны набегающего на него безграничного потока, можно разбить на касательные и нормальные. [c.638] Первые из этих сил обыкновенно называют, несколько обобщая это понятие, трением . Такой термин полностью соответствует лишь случаю гладкой (в аэродинамическом, как было указано в 95, смысле этого слова) стенки крыла, когда касательные силы определяются действительно трением в жидкости — вязкостью. [c.638] Мы сохраним тот же термин и для случая шероховатой стенки, понимая в этом случае под напряжением трения отнесенную к единице площади крыла сумму сил сопротивлений отдельных бугорков шероховатости. [c.638] Проекцию главного вектора приложенных к крылу касательных на направление потока на бесконечности будем называть сопротивлением трения. [c.638] Нормальные силы давления потока на поверхность крыла образуют в своей совокупности главный вектор сил давлений, проекция которого на направление потока на бесконечности называется сопротивлением давлений. [c.638] Профильное сопротивление крыла представляется суммой сопротивления трения и сопротивления давлений. [c.638] В реальной вязкой жидкости парадокс Даламбера не имеет места. Для случая очень малых рейнольдсовых чисел в этом можно было убедиться на примере задачи Стокса об обтекании шара. Для течений с большими рейнольдсовыми числами, при наличии пограничного слоя, вопрос становится менее ясным. Основное свойство пограничного слоя передавать без искажений на стенку крыла давления внешнего, безвихревого потока может навести на мысль, что парадокс Даламбера для движений с пограничным слоем сохраняет свою силу. Если бы распределение давлений во внешнем потоке в точности совпадало с тем, которое получается при безотрывном безвихревом обтекании крыла идеальной жидкостью, то сопротивление давлений, действительно, равнялось бы нулю. Однако на самом деле наблюдается следующее явление. Линии тока, вследствие подтормаживающего влияния стенки, оттесняются от поверхности крыла. Такое искажение картины течения приводит к нарушению идеального распределения давлений по поверхности крыла. [c.639] Пограничный слой, таким образом, ока -5Ывает обратное влияние на внешний поток, а не только управляется внешним потоком, как предполагалось до сих пор. Строго говоря, вообще нельзя задавать наперед распределение давлений или скоростей во внешнем потоке, так как это распределение зависит от развития пограничного слоя, а следовательно, является функцией рейнольдсова числа и других факторов обтекания (например, шероховатости поверхности). Практически, если тело обтекается без срывов и рейнольдсовы числа достаточно велики, а изменения их происходят не в слишком большом диапазоне, то пренебрежение обратным влиянием пограничного слоя на распределение давлений и скоростей во внешнем потоке оказывается допустимым. [c.639] Следует подчеркнуть, что обратное влияние пограничного слоя на внешнее обтекание особенно сильно проявляется на тех участках пограничного слоя, где слой наиболее толст, например, вблизи хвостика крыла. [c.639] Не удивительно, что в этом случае парадокс Даламбера не выполняется, и лобовое сопротивление цилиндра определяется почти целиком сопротивлением давлений, сопротивление же трения — незначительно. [c.640] Такую же картину обратного влияния пограничного слоя на внешнее обтекание имеем и в случае шара (рис. 183). И в этом случае распределение давления оказывается сильно зависящим от рейнольдсова числа. Особенно это, конечно, сказывается вблизи кризиса обтекания . [c.640] Как показывают опыты, сопротивление давлений хорошо обтекаемого крылового профиля убывает с ростом рейнольдсова числа, что и естественно, так как при возрастании рейнольдсова числа голгцина пограничного слоя уменьшается и внешний поток приближается к безвихревому обтеканию профиля идеальной жидкостью. [c.641] Обратное влияние пограничного слоя на внешний поток поддается не только качественному объяснению, но и количественной оценке. Поскольку в дальнейшем это не приведет к большому усложнению, будем считать жидкость не голько вязкой, но и сжимаемой. [c.641] Подробнее см.. Современное состояние гидроаэродинамики вязкой жидкости, т. II, ИЛ, 19-18, стр. 78—85. [c.641] На поверхности обтекаемого тела ( у = 0) смещение линии тока исчезает у обоих сравниваемых потоков — действительного и идеального безвихревого — общая нулевая линия тока. При удалении от поверхности крыла смещения действительных линий тока по отношению к идеальным возрастают. [c.642] Пользуясь определением толщины вытеснения, докажем, что действительное распределение давления по поверхности крылового профиля при плоском его обтекании вязким сжимаемым газом совпадает с распределением давления при безвихревом обтекании идеальным газом полутела (рис. 201), образованного наращиванием на профиль крыла и по обе стороны от нулевой линии тока в его следе толщины вытеснения, рассчитанной по действительному распределению давления. [c.642] Для подтверждения правильности только что высказанного положения предположим, что задано плоское обтекание крылового профиля реальным (вязким и сжимаемым) газом, сопровождаемое образованием на теле пограничного слоя (а за телом — аэродинамического следа), толщина которого предполагается малой по сравнению с продольными размерами тела. [c.642] Вернуться к основной статье