ПОИСК Статьи Чертежи Таблицы Полосатые спектры молекул в видимой и ультрафиолетовой областях из "Оптика " При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров. [c.744] Для наблюдения молекулярных спектров, так же как и спектров атомов, следует по возможности защитить молекулы от сильных возмущающих воздействий окружающих частиц, т. е. наблюдать вещество в газообразном состоянии. Возбудить молекулярные спектры можно в пламени горелки или в различных видах электрического разряда гейслерова трубка, дуга, искра. При этом, как правило, следует избегать слишком сильных возбуждений, ибо в противном случае может наступить распад молекул (диссоциация) и, следовательно, исчезнут носители молекулярных спектров. Такой процесс легко наблюдать при возбуждении спектров в электрической дуге. В наиболее горячих частях дуги с температурой 50(Ю—7000 К испускается, главным образом, излучение атомов и наиболее прочных соединений (например N) излучение же большинства соединений сосредоточено в основном в более холодных частях дуги. [c.744] Трудности наблюдения полосатых спектров многоатомных молекул и сложность их теоретической трактовки привели к тому, что спектроскопическое исследование их еще не продвинулось достаточно далеко. В дальнейшем изложении мы ограничимся двухатомными молекулами. Схематический вид и фотография типичного молеку лярного спектра испускания представлены на рис. 38.6 и 38.7 Как мы видим, он состоит из ряда линий, сгруппированных в тес ны полосы. Эти полосы, (а, Ь, с) расположены с определенной пра вильностью, образуя системы полос в свою очередь системы А, В,. . полос, разбросанные нередко по всему спектру, составляют группу, или серию, систем полос ). Фотография изображает одну из систем полос в спектре йода. Совокупность таких систем и представляет всю серию, образующую полный спектр йода. [c.745] Истолкование молекулярных спектров также возможно в квантовой теории. Необходимо только при расчете энергии стационарного состояния молекулы принимать во внимание большую сложность ее структуры. В основном изменение энергии молекулы происходит, как и в атоме, в результате изменений в электронной конфигурации, образующей периферическую часть молекулы. Однако при заданной электронной конфигурации молекулы могут отличаться друг от друга еще и состоянием, в котором находятся их ядра, могущие колебаться и вращаться относительно общего центра тяжести. С этими возможными типами движения также связаны известные запасы энергии, которые должны быть учтены в общем балансе. Как по общим соображениям теории квантов, так и на основании более строгих квантовомеханических расчетов эти запасы энергии также необходимо считать дискретными и имеющими квантовый характер. [c.746] Соотношение между различными частями полосатого спектра можно представить и несколько иначе. Вообразим, что в нашей молекуле могут изменяться только электронные состояния, а вращения и колебания отсутствуют, т. е. что энергия стационарных состояний молекулы определяется только величиной Х е- Спектр такой молекулы состоял бы, подобно спектру атомов, из линий, соответствующих электронным переходам с частотой V = (1 —и расположенных по всему спектру примерно на местах, где наблюдаются в действительности системы полос. Эти линии и намечают распределение всей серии по спектру. [c.747] Учтем теперь, что в молекуле возможны различные колебательные состояния в таком случае каждая из описанных выше линий распадается на систему линий, каждая из которых представляет отдельную полосу реальной системы полос. Наконец, если принять во внимание возможные изменения ротационной энергии, то каждая из только что упомянутых отдельных линий превратится в совокупность линий, представляющих наблюдаемые в действительности полосы. Изложенное толкование наблюдаемых закономерностей позволяет заключить, что —1Уг), т. е. разность энергий двух электронных состояний, гораздо больше, чем (117. ,—а последняя в свою очередь много больше, чем (1 ,—Ц7 ), т. е. [c.747] Неравенство (213.2) вполне соответствует квантовым свойствам обсуждаемой модели. Действительно, ротационная энергия молекулы связана со сравнительно медленными вращениями тяжелых ядер и не превышает обычно 4-10 Дж (1/А, л 20 м ). Колебания ядер, происходящие под действием межатомных сил, связывающих атомы в молекулу, происходят со значительно большей частотой им соответствует энергия около 200 10 Дж (1/ л 1000 см ). Наконец, для возбуждения электронных переходов требуется энергия того же порядка, как и для аналогичного процесса в атоме, т. е. 5000-10- Дж (1/Я, 25 000 см ). [c.747] Сколько-нибудь полная расшифровка полосатых спектров по описанной схеме удается для наиболее простых (главным образом двухатомных) молекул, где при помощи анализа молекулярных спектров удается оценить момент инерции молекулы и, следовательно, взаимное расстояние составляющих ее ядер, собственные периоды колебаний, теплоту диссоциации молекулы на атомы и т. д. [c.747] С этим связаны сравнительно большое расстояние между отдельными линиями полос и относительная бедность спектра линиями, затрудняющие распознавание описанной выше закономерности полосатых спектров и делающие спектры данных молекул нетипичными. [c.748] Вернуться к основной статье