ПОИСК Статьи Чертежи Таблицы Обоснование гипотезы световых квантов в явлениях фотоэффекта из "Оптика " Уравнение Эйнштейна (177.1) (его можно также записать в виде = h (v — Vq) = eV), подтвержденное опытами Милликена, подвергалось и в дальнейшем разнообразным экспериментальным проверкам. В частности, частота падающего света варьировалась в очень широких пределах — от видимого света до рейтгеновских лучей, и во всем интервале опыт оказался в превосходном согласии с теорией. В опытах с рентгеновскими лучами проверка упрощается благодаря тому, что v очень велико по сравнению с Vq. Поэтому соотношение Эйнштейна принимает вид hv — eV и позволяет определить V, если измер ёно V. Таким приемом пользуются даже для определения длины волны очень жестких у-лучей, для которых метод дифракции на кристаллах невозможно осуществить с достаточной точностью из-за малости соответствующей длины волны. [c.640] Действительно, опыт подтвердил, что при испускании рентгеновских волн наблюдается максимальная частота (коротковолновая граница), определяемая из написанного условия, где У — ускоряющая разность потенциалов, е — заряд электрона, V — частота границы и /г — постоянная Планка. Волны более короткие (большие V) никогда не наблюдаются, волны же более длинные соответствуют превращению лишь части кинетической энергии электрона в излучение. Определение коротковолновой границы рентгеновского спектра может быть выполнено весьма надежно. Поэтому такого рода опыты используются как один из наиболее совершенных методов определения значения постоянной Планка с помощью соотношения hv — еУ. Наилучшие измерения, выполненные этим методом, дали /г = 6,624-10 Дж-с. [c.641] Подобные опыты можно сильно разнообразить, пользуясь удобством экспериментирования, предоставляемым величинами рентгеновского кванта. Все они говорят в пользу передачи световой энергии концентрированными порциями, т. е. в пользу гипотезы световых квантов. Один из наиболее убедительных опытов этого рода принадлежит А. Ф. Иоффе. [c.642] Осуществлены также опыты, показывающие, что энергия рентгеновских лучей распространяется в разные стороны не одновременно, но что порции ее (кванты) летят то в ту, то в другую сторону. [c.642] Опыт был выполнен при помощи двух счетчиков ), достаточно чувст- вительных для того, чтобы зарегист-а— рировать действие одного рентгенов-ского кванта, и достаточно быстро I отмечающих его появление. Опыт этот осуществлен Боте по схеме, указанной на рис. 32.6. [c.642] Аналогичные опыты с квантами видимого света затруднены тем, что кванты эти малы. Однако к световым квантам очень чувствителен глаз хотя глаз не реагирует на один отдельный квант, но опыты показывают, что необходимое для минимального светового ощущения число квантов в секунду не очень значительно. По измерениям С. И. Вавилова, в области максимальной чувствительности глаза (550 нм) для отдохнувшего глаза пороговая чувствительность в среднем составляет около 200 квантов, падающих за 1 с на зрачок наблюдателя. В этих условиях, как показали опыты Вавилова, удается наблюдать флуктуационные колебания светового потока, имеющие ясно выраженный статистический характер. Хотя в таких опытах и нельзя однозначно отделить квантовые флуктуации светового потока от флуктуаций, связанных с физиологическими процессами в глазу, тем не менее и они могут рассматриваться как подтверждающие квантовый характер явления кроме того, эти опыты дают результаты, существенные для исследования свойств живого глаза. В частности, с их помощью удалось установить, что число квантов, которые должны поглощаться в сетчатке при пороговом раздражении, раз в 9—10 меньше числа квантов, падающих на зрачок, и составляет примерно 20 в секунду. [c.643] совокупность сведений о фотоэффекте, изложенных выше, настойчиво свидетельствует в пользу представления о световых квантах. Можно сказать, что свет частоты V не только покидает атом в виде порции энергии, равной /IV, но и в дальнейшем распространяется в пространстве и вступает во взаимодействие с веществом в виде такой порции, локализованной и перемещающейся как целое со скоростью света. Для таких элементарных световых частиц принято специальное название — фотон. [c.643] Корпускулярные свойства фотона не должны заставить нас забыть о том, что для огромного круга явлений, с которыми мы ознакомились ранее, волновые представления оказались в высшей степени плодотворными. Отметим только, что и в явлении фотоэффекта есть черты, говорящие в пользу классических волновых представлений о свете. Эти черты особенно отчетливо выступают при исследовании зависимости силы фототока от длины волны. [c.644] Вернуться к основной статье