ПОИСК Статьи Чертежи Таблицы Световые измерения (фотометрия) из "Оптика " Фотометрические измерения разделяют на объективные (производимые с помощью приборов, не требующих участия глаза, например, с помощью фотоэлементов) и субъективные, или визуальные, в которых измерения основаны на показаниях глаза. [c.56] Объективные (фотоэлектрические) фотометры за последние годы получают все большее и большее развитие, постепенно вытесняя приборы, основанные на визуальных методах измерения. Мы познакомимся более подробно с этими приборами в главе о фотоэффекте. Укажем только, что все они основаны на зависимости, в силу которой фотоэлектрический ток прямо пропорционален поглощенному фотоэлементом световому потоку. Поэтому шкалу электроизмерительного прибора, соединенного с фотоэлементом, можно градуировать непосредственно в тех или иных фотометрических единицах, например в люксах. [c.56] Невозможность в очень широких пределах варьировать отношение расстояний заставляет прибегать к другим способам ослабления потока. К ним относятся поглощение света фильтром переменной толщины (клином) (рис. 3.7) или сетками с большим или меньшим отношением площади ячеек и проволок, введение в пучок вращающегося круга с секториальным вырезом большей или меньшей площади (рис. 3.8), а также ослабление света системой поляризационных призм (рис. 3.9). [c.56] Яркость прошедшего света зависит от угла поворота призм вокруг горизонтальной оси. [c.57] Существуют также фотометры, позволяющие непосредственно определять суммарный световой поток, а следовательно, и среднюю сферическую силу света источника (шаровой фотометр или интегратор), освещенность поверхности (люксметр), яркость источника и т. д. [c.58] Во всяком фотометре рассматривается некоторое поле, одна часть которого освещена только одним источником, а другая — только другим. При этом надо позаботиться о том, чтобы обе сравниваемые части поля фотометра освещались соответственными источниками под одним и тем же углом глаз наблюдателя также должен рассматривать оба поля под одинаковыми углами. Рис. 3.10 показывает, как осуществляется этот принцип в одной из простейших моделей фотометров. [c.58] Устройство этого фотометра крайне просто глаз наблюдателя А рассматривает белую трехгранную призму МРМ, помещенную внутри зачерненной трубки и освещаемую источниками 1 н /,2- Варьируя расстояния от источников до призмы, можно уравнять освещенности поверхностей МР и РМ. Для удобного измерения расстояний Ь Р и Ь Р приборы располагают на оптической скамье. [c.58] Более совершенно устроен фотометр Люммера — Бродхуна. Существенную часть фотометра составляет кубик Люммера, входящий как составная часть и во многие другие фотометрические аппараты. Кубик Люммера (рис. 3.11) состоит из двух прямоугольных призм, у одной из которых грань, соответствующая гипотенузе, оставлена плоской только в центре, края же сошлифованы. Призмы тщательно приполированы и плотно прижаты друг к другу, так что в месте соприкосновения представляют как бы один кусок и ведут себя подобно прозрачному телу (оптический контакт). [c.58] Схема фотометра с применением кубика Люммера показана на рис. 3.12. Здесь и 2 — Два сравниваемых источника света 5 — белый диффузно разбрасывающий свет экран, вполне идентичный с обеих сторон и 8 — два вспомогательных зеркала Р Рч — кубик Люммера А — глаз наблюдателя и V — лупа, позволяющая визировать плоскость раздела кубика. При наблюдении мы видим центр кубика освещенным лучами, идущими от источника а внешняя часть поля освещается лучами от испытавшими полное внутреннее отражение на грани РгР - Если освещенность экрана 5 с обеих сторон одинакова, то граница между полями исчезает. Определяя соответственные расстояния 5 и мы найдем отношение сил света источников. [c.58] В осветительной технике очень важным является вопрос, как велика должна быть освещенность на данной плоскости или в данном месте рабочего помещения для разных видов работы чтения, черчения, шитья и т. д. [c.59] Существуют специальные модели фотометров, которые приспособлены для непосредственного определения освещенности (люксметры). В последнее время в качестве люксметров с успехом применяются фотоэлементы, шкала которых проградуирована соответствующим образом. [c.59] Для измерения Е определяют яркость этой пластинки обычным фотометром на оптической скамье или каким-либо иным. Обычно употребляют шары Ульбрехта не менее 1 м диаметром. Нередко применяются и большие шары. [c.60] Своеобразной разновидностью визуального метода, пригодного для измерения самых малых яркостей, является метод, разработанный акад. С. И. Вавиловым и известный под названием метода гашения . Основоположником этого метода С. И. Вавилов считал Франсуа Мари (1700 г.), но следует отметить, что лишь после тщательных исследований С. И. Вавилова метод этот приобрел характер важного способа оценки слабых интенсивностей. Метод покоится на способности глаза довольно хорошо оценивать пороговое значение яркости, т. е. минимальную, еще воспринимаемую отдохнувшим глазом яркость. Это пороговое значение оказывается для каждого наблюдателя довольно устойчивым. Метод гашения заключается в том, что каким-либо способом ослабляют наблюдаемую яркость до порогового значения. Зная, во сколько раз пришлось произвести ослабление, наблюдатель может определить исходную яркость. Таким путем удается оценивать яркости в десятитысячные кд/м и ниже, что почти недоступно никаким другим методам. [c.61] Закон независимости световых пучков, упомянутый в 1, означает, что световые пучки, встречаясь, не воздействуют друг на друга. Зто положение было ясно сформулировано Гюйгенсом, который писал в своем Трактате Одно из чудеснейших свойств света состоит в том, что, когда он приходит из разных н даже противоположных сторон, лучи его производят свое действие, проходя один сквозь другой без всякой помехи. Этим вызывается то, что несколько зрителей могут одновременно видеть через одно и то же отверстие различные предметы Сам Гюйгенс прибавляет, что этот вывод нетрудно понять с точки зрения волновых представлений. Он является следствием принципа суперпозиции (см. 4), в силу которого световой вектор одной световой волны просто складывается с вектором другой волны, не испытывая никакого искажения. При этом, однако, возникает следующий вопрос. В силу принципа суперпозиции при сложении векторов отдельных волн может получиться волна, амплитуда которой равна, например, сумме амплитуд складывающихся волн. А так как интенсивность волны пропорциональна квадрату амплитуды, то интенсивность результирующей волны не будет, вообще говоря, равна сумме интенсивностей складывающихся волн, ибо квадрат суммы нескольких величин не равен сумме их квадратов. Обычный же опыт показывает, что освещенность, создаваемая двумя или несколькими световыми пучками, представляется простой суммой освещенностей, создаваемых отдельными пучками. Таким образом, обычные экспериментальные факты кажутся на первый взгляд противоречащими волновым представлениям. [c.62] Для выяснения этой фундаментальной проблемы напомним сведения, относящиеся к сложению колебаний и волн. [c.62] Однако практически мы никогда не имеем дела со строго гармоническими колебаниями, описываемыми (12.1), т. е. колебаниями, длящимися бесконечно долго с неизменной амплитудой. Обычно колебания время от времени обрываются и возникают вновь уже с иной, нерегулярно измененной фазой, т. е. не являются строго гармоническими. В таком случае и результирующая интенсивность (/ со А ) также меняется с течением времени ). [c.63] Наблюдая эту интенсивность, мы могли бы получить изменяющиеся значения однако для этого необходимо применить для наблюдения прибор, который реагировал бы достаточно быстро, чтобы отмечать изменения I. В противном случае мы не сможем следить за всеми изменениями / и будем регистрировать только некоторое среднее во времени значение интенсивности I, обозначаемое /, подобно тому как глаз не в состоянии следить за колебаниями яркости лампочки накаливания, питаемой переменным током, и отмечает некоторую постоянную среднюю яркость. [c.63] при сложении двух колебаний одного периода надо различать два случая. [c.64] Как указывалось выше, строго гармонические колебания одинаковой частот.ы всегда вполне когерентны между собой, ибо, поскольку они длятся, не обрываясь, имеющаяся у них разность фаз сохраняется без изменения сколь угодно долгое время. Поэтому при сложении таких гармонических колебаний всегда проявляется интерференция. [c.64] результат сложения двух гармонических колебаний одинаковой частоты зависит от соотношения между их фазами. При сложении большого числа N колебаний одинаковой частоты с произвольными фазами результат будет, конечно, зависеть от закона распределения фаз. Предполагая для простоты, что все колебания имеют одинаковые амплитуды, равные а, найдем, что результирующая интенсивность может заключаться между и нулем. Как показал Рэлей ), при распределении фаз, которые подвергаются вполне случайным изменениям, средняя энергия суммы таких колебаний за время, охватывающее достаточно большое число изменений фаз, равна т. е. в данном общем случае имеет место сложение интенсивностей. Этот вывод имеет самое непосредственное отношение к реальным источникам света. Результирующее колебание от отдельных испускающих центров (атомов), составляющих источник, создает освещенность, величина которой в данный момент и в дайной точке зависит от соотношения фаз между колебаниями отдельных центров. Но наш глаз воспринимает лишь среднюю освещенность за некоторый достаточный для восприятия интервал времени и на некоторой достаточной по величине освещенной площадке. Это обстоятельство приводит к полному усреднению фазовых соотношений, в результате чего воспринимаемая освещенность окажется просто суммой освещенностей, создаваемых каждым светящимся центром нашего источника. Поэтому мы вправе сказать, что две одинаковые свечи дают освещенность вдвое большую, чем одна. [c.65] Вернуться к основной статье