ПОИСК Статьи Чертежи Таблицы Диффузия взвешенных в жидкости частиц из "Теоретическая физика. Т.4. Гидродинамика " Под влиянием молекулярного движения в жидкости взвешенные в ней частицы совершают беспорядочное броуновское движение. Пусть в начальный момент времени н некоторой точке (начале координат) находится одна такая частица. Ее дальнейшее движение можно рассматривать как диффузию, причем роль концентрации играет вероятность нахождения частицы в том или ином элементе объема жидкости. Соответственно для определения этой вероятности можно воспользоваться решением (59,17) уравнения диффузии. Возможность такого рассмотрения связана с тем, что при диффузии в слабых растворах (т. е. при с I, когда только и применимо уравнение диффузии в форме (59,16)) частицы растворенного вещества практически не взаимодействуют друг с другом, и потому можно рассматривать движение каждой частицы независимо от других. [c.330] Таким образом, среднее расстояние, проходимое частицей в течение некоторого интервала времени, пропорционально квадратному корню из этого времени. [c.330] Коэффициент диффузии взвешенных в жидкости частиц может быть вычислен по их так называемой подвижности. [c.330] пропорциональна этой силе. Постоянная Ь называется по 9-вижностью и может быть, в принципе, вычислена с помощью гидродинамических уравнений. Так, для частиц, имеющих форму шариков (радиуса R), сила сопротивления равна 6лт)7 о (см. [c.331] Это и есть искомое соотношение между коэффициентом диффузии и подвижностью соотношение Эйнштейна). [c.332] Наряду с поступательным броуновским движением и поступательной диффузией взвешенных частиц можно рассмотреть их вращательное броуновское движение и диффузию. Аналогично тому как коэффициент поступательной диффузии вычисляется через силу сопротивления, так коэффициент вращательной диффузии может быть выражен через момент сил, действующих на вращающуюся в жидкости частицу. [c.332] Вернуться к основной статье