ПОИСК Статьи Чертежи Таблицы Движение вблизи линии отрыва из "Теоретическая физика. Т.4. Гидродинамика " Характер этих особенностей тоже непосредственно следует из сказанного. Действительно, дойдя до линии отрыва, течение отклоняется, переходя из области пограничного слоя в глубь жидкости. Другими словами, нормальная составляющая скорости перестает быть малой по сравнению с тангенциальной и делается по крайней мере одного с нею порядка величины. Мы видели (см. (39.11)), что отношение так что возрастание Vy до Vy Vx означает увеличение в Vr раз. Поэтому при достаточно больших числах Рейнольдса (о которых, разумеется, только и идет речь) можно считать, что Vy возрастает в бесконечное число раз. Если перейти в уравнениях Прандтля к безразмерным величинам (см. (39,10)), то описанное положение формально означает, что безразмерная скорость и в решении уравнений становится на линии отрыва бесконечной. [c.232] Будем рассматривать для некоторого упрощения дальнейшего исследования двухмерную задачу о поперечном обтекании бесконечно длинного тела. Как обычно, х будет координатой вдоль поверхности тела в направлении течения, а координата у будет расстоянием от поверхности тела. Вместо линии отрыва здесь можно говорить о точке отрыва, подразумевая пересечение линии отрыва с плоскостью х, у, в выбранных координатах это есть точка х — onst = Хо, у = 0. Область до точки отрыва пусть соответствует х Xq. [c.232] Но в уравнениях Прандтля скорость Vy является своего рода вспомогательной величиной, которой при исследовании движения в пограничном слое обычно не интересуются (в свя,зи с ее малостью). Поэтому желательно выяснить, какими свойствами обладает вблизи линии отрыва функция Vx. [c.232] Таким образом, мы приходим к важному результату, что в самой точке отрыва х — хо, у = 0) обращается в нуль не только скорость Vx, но и ее первая производная по у (этот результат принадлежит Прандтлю). [c.234] Если бы в точке x = Xq не возник отрыв (т. е. если Л=0), то при х Хо было бы (dvx/dy) у=о О, т. е. при удалении от стенки (при достаточно малых у) Vx делалось бы отрицательным, увеличиваясь по абсолютной величине. Другими словами, за точкой х = Хо жидкость двигалась бы в нижних слоях пограничного слоя в направлении, обратном основному потоку возникло бы подтекание жидкости к этой точке. Подчеркнем, что из такого рода рассуиедений еще отнюдь нельзя было бы делать вывод о необходимости отрыва в точке, где dvx/dy — 0-, вся картина течения с подтеканием могла бы (как это и было бы при Л=0) находиться целиком в области пограничного слоя, не выходя в область основного потока, между тем как для отрыва характерен именно выход течения в основной объем жидкости. [c.235] В предыдущем параграфе было показано, что картина движения в пограничном слое остается при изменении числа Р ейнольд-са подобной самой себе, причем, в частности, масштабы по координате х остаются неизменными. Отсюда следует, что значение Хо координаты х, при котором обращается в нуль производная dvx/dy) у о, не меняется при изменении R. Таким образом, мы приходим к существенному выводу, что положение точки отрыва на поверхности обтекаемого тела не зависит от числа Рейнольдса (до тех пор, разумеется, пока пограничный слой остается ламинарным см. об этом 45). [c.235] Из полученных результатов можно вывести заключение о том, что при обтекании тела в том или ином месте его поверхности должен произойти отрыв. Действительно, на заднем, как и на переднем, конце тела имеется точка, в которой при потенциальном обтекании идеальной жидкостью скорость жидкости обращалась бы в нуль (критическая точка). Поэтому, начиная с некоторого значения х, скорость U(х) должна была бы начать падать, обращаясь в конце концов в нуль. С другой стороны, ясно, что текущая вдоль поверхности тела жидкость тормозится тем сильнее, чем ближе к стенке находится рассматриваемый ее слой (т. е. чем меньше у). Поэтому, раньше чем обратилась бы в нуль скорость U(x) на внешней границе пограничного слоя, должна была бы обратиться в нуль скорость в непосредственной близости от стенки. Математически это, очевидно, означает, что производная dvxjdy во всяком случае должна была бы обратиться в нуль (а поэтому отрыв не может не возникнуть) при некотором X, меньшем, чем то его значение, при котором было бы U x)=0. [c.236] В случае обтекания тел произвольной формы все вычисления могут быть произведены совершенно аналогичным образом и приводят к результату, что на линии отрыва обращаются в нуль производные dvxfdy, dvzjdy от обеих касательных к поверхности тела компонент скорости Vy, и Vz (ось у по-прежнему направлена по нормали к рассматриваемому участку поверхности тела). [c.236] Интересным случаем возникновения отрыва является обтекание угла, образованного двумя пересекающимися твердыми поверхностями. При ламинарном потенциальном обтекании выпуклого угла (рис. 3) скорость жидкости на крае угла обратилась бы в бесконечность (см. задачу 6 10), возрастая вдоль потока, подходящего к краю, и убывая в потоке, уходящем от него. В действительности, быстрое падение скорости (и соответственно возрастание давления) за краем угла приводит к возникновению отрыва, причем линией отрыва является линия края угла. В результате возникает картина движения, рассмотренная в 35. [c.237] При ламинарном же течении внутри вогнутого угла (рис. 4) скорость жидкости обращается на краю угла в нуль. Падение скорости (и возрастание давления) имеет здесь место в потоке, подходящем к краю угла. Оно приводит, вообще говоря, к возникновению отрыва, причем линия отрыва расположена вверх по течению от края угла. [c.237] Определить наименьший порядок увеличения давления Ар, которое должно иметь место (в основном потоке) на расстоянии Ах, для того чтобы произошел отрыв. [c.237] Вернуться к основной статье