ПОИСК Статьи Чертежи Таблицы Возможные способы построения систем единиц электрических и магнитных величин из "Единицы физических величин и их размерности " В зависимости от того, какие взаимодействия и в каком виде принимаются для определения физических величин, служащих для описания электрических и магнитных явлений, устанавливается совокупность определяющих соотношений, с помощью которых вводятся соответствующие производные единицы. Что касается электростатических взаимодействий, то не возникает со-мчений в том, что наиболее естественно основываться на законе Кулона (7.1). [c.186] Для того чтобы преодолеть эту трудность, можно предложить несколько путей. Некоторые из них основываются на том, что замкнутый контур с током обладает свойствами диполя, т. е. сам создает поле, аналогичное полю диполя, и во внешнем поле на него действуют такие же силы, как на диполь, в частности, в однородном поле он испытывает вращающий момент. Можно рассматривать взаимодействие двух контуров, линейные размеры которых малы по сравнению с расстоянием между ними. [c.187] Знак минус показывает, что если моменты диполей направлены в одну сторону, то между ними возникает сила притяжения. [c.187] Обращает на себя внимание тот факт, что магнитная проницаемость стоит не в знаменателе, а в числителе. Как показывает анализ этого вопроса, магнитные мас- сы полюсов при изменении среды сами изменяются так, что если обозначить магнитную массу в вакууме то. [c.187] Используя (7.9), можно в принципе вывести все законы электромагнетизма, построить разные системы единиц и установить соотношения между единицами разных систем. [c.188] Вместо взаимодействия малых контуров можно использовать взаимодействие каких-либо других контуров, например весьма длинных прямолинейных параллельных проводников (теоретически бесконечно длинных), установив экспериментально силу взаимодействия, приходящуюся на отрезок определенной длины каждого проводника. Опыт покажет, что эта сила. [c.188] В случае неоднородного поля контур, кроме момента, будет испытывать и силу, но для нашей цели достаточно рассматривать ту часть воздействия на контур, которая определяется вращающим моментом. [c.189] В формуле (7.13) dl — элемент контура, г — радиус-вектор, определяющий расстояние от этого элемента до точки, в которой определяется поле, ф —угол между г и dl (рис. 26). [c.189] Произведение коэффициентов ЖьЖь отличается от Ж и Ж лишь числовым множителем. Формула (7.12а) по смыслу аналогична формуле (7.1), с той лишь разницей, что (7.1) описывает взаимодействие точечных зарядов, а (7,12а)—взаимодействие произвольного контура с малым пробным плоским контуром. Хотя формула (7.12а) может быть непосредственно использована для установления единиц, удобнее взять раздельно (7.12) и (7.13). [c.189] Эта аналогия показывает неудачность наименований характеристик магнитного поля. Происхождение этих наименований, как мы говорили, обусловлено тем, что для определения магнитных величин основным служил закон Кулона для взаимодействия полюсов постоянных магнитов (7.3). [c.190] Коэффициент Жь принято обозначать цо- Ранее в физике и электротехнике объединяли хо и и в один коэффициент 1А,о л с обозначением д, и называли абсолютной магнитной проницаемостью, а безразмерную магнитную проницаемость, равную в вакууме единице, обозначали называли относительной магнитной проницаемостью. [c.191] Равенство единице коэффициента Ж определяет электростатическую единицу количества электричества л, следовательно, электростатическую единицу силы гока. Таким образом, в уравнении (7.12а) имеются единицы для всех входящих в него величин. Поэтому значение коэффициента [х,о должно быть определено либо экспериментально, либо теоретически. Развитая Максвед-иом электромагнитная теория света показала, что коэф- )ициент 10 должен равняться 1/с где с — скорость света 3 вакууме. Эксперимент блестяще подтвердил этот вывод. [c.191] Международная система (СИ). Перейдем теперь к построению электрических и магнитных единиц Международной системы (СИ). в создании этой системы главную роль сыграло то обстоятельство, что в электротехнике, радиотехнике и физике давно широко пользовались так называемыми практическими единицами кулоном, вольтом, ампером, джоуле.м и т. д. Поэтому возникла задача ввести в систему такие коэффициенты, которые позволили бы применять ее во всех областях учения об электричестве и магнетизме, и, объединив с механическими, тепловыми и другими единицами, создать систему, охватывающую все области физики и техники. [c.192] Были предложены системы с различными комбинациями показателей а и Ь 10 г и I см (система Блон-деля), 10- г и 10 см (система Максвелла, в которой коэффициент хо равен единице) и др. Наибольщее внимание привлекла система Джорджи а — 3, Ь = 2, г. е. I кг и 1 м. Обе эти единицы для практики удобны и непосредственно представлены международными эталонами. Поскольку система при этом образована таким образом, что в нее принудительно была введена одна новая единица (любая из электрических или магнитных единиц, например ампер, вольт, ом), в выражениях для закона Кулона и электромагнитного взаимодействия неизбежно должны были появиться два новых коэффициента вместо одного в каждой из систем СГСЭ, СГСМ и СГС. [c.193] Что касается размерностей соответствующих единиц, то здесь существовали три возможности. Можно было, считая один из коэффициентов (в законе Кулона или законе взаимодействия токов) числовым множителем, лишенным размерности, построить систему размерностей так же, как в одной из двух систем СГСЭ или СГСхМ, либо же считать одну из электрических или магнитных единиц основной и соответствующим образом строить систему размерностей не на трех, а на четырех основ ных единицах ). Именно этот последний путь и бьи принят при построении системы размерностей СИ. Од ним из ее преимуществ является более простой вид который приобретают формулы размерности. [c.193] Эта размерность отличается от размерности заряда в системе СГС (см. (7.35)) множителем, размерность которого обратна размерности скорости. Очевидно, такими же размерностями обладают единицы силы тока и количества электричества в системе СГСМ. [c.194] В электротехнической и радиотехнической литературе получила широкое распространение так называемая рационализованная форма написания уравнений электромагнетизма, предложенная впервые Хевисайдом. При рационализованной форме в знаменатели законов Кулона (7.1) и Био, Савара и Лапласа (7.13) ставится коэффициент 4я. В результате этого в ряде уравнений, относительно чаще встречающихся на практике, этот коэффициент исчезает и уравнения приобретают более симметричный вид. В первую очередь это относится к уравнениям Максвелла. [c.194] Коэффициент (Хо выбирается так, чтобы при взаимодействии двух проводников с токами /j и /2, измеренными в амперах, и измерении расстояний и длин отрезков проводников в метрах сила взаимодействия измерялась бы в ньютонах. [c.195] Международная система устанавливает это значение для определения ампера, уже не связывая его с единицей СГСМ. Точная формулировка ампера дана в 1.5. [c.196] С метрологической точки зрения существует разница между коэффициентами ,1о и ео. В то время как первый определен как неиз у1енная, зафиксированная международным соглашением величина, значение ео определяется точностью измерения скорости света и по мере уточнения последней может несколько изменяться. [c.197] Вернуться к основной статье