ПОИСК Статьи Чертежи Таблицы Квантовая кинетика с начальными корреляциями из "Статистическая механика неравновесных процессов Т.2 " В предыдущем разделе мы встретились с новыми величинами — квазиравновес-ными временными гриновскими функциями G . Эти функции входят, например, в граничное условие (6.3.108) и в выражение (6.3.110) для одночастичной матрицы плотности. Мы рассмотрим теперь задачу, в которой функции используются для вывода квантовых кинетических уравнений. [c.62] Речь пойдет о начальном этапе эволюции системы из некоторого, вообще говоря, неравновесного состояния, описываемого статистическим оператором ( о) Хотя эта задача имеет долгую историю (см., например, [21, 55, 56, 80, 81, 114, 153, 168]), интерес к ней значительно возрос в последнее время в связи с экспериментальными и теоретическими исследованиями быстрых релаксационных процессов в полупроводниках [83, 149] и столкновений тяжелых ядер [56, 75, 105, 106]. Кинетическое уравнение с учетом начальных корреляций в низшем порядке теории возмущений было выведено в работах [110, 114] из цепочки уравнений для приведенных матриц плотности. Более общее квантовое кинетическое уравнение с начальными корреляциями было выведено методом функций Грина в работе [133], которой мы и будем, в основном, следовать. [c.62] Вернуться к основной статье