ПОИСК Статьи Чертежи Таблицы Уравнения Схоутена движения неголономных систем из "Курс теоретической механики. Т.2 " Здесь 8 ) — ковариантные компоненты вектора перемещении в пространстве конфигураций, т — масса изображающей точки в пространстве конфигураций. Выше было показано, что эта масса равна единице. Здесь вновь придем к этому заключению при соответствующем выборе метрики в пространстве конфигураций. [c.167] В этом равенстве 5 — линейный элемент в пространстве конфигураций. Конечно, при указанном выборе метрики изображающей точке в пространстве конфигураций приписывается масса, равная единице. [c.167] Чтобы компоненты бхлг+ь были равны нулю, следует выбрать соответствующим способом систему координатных векторов не-голономного координатного базиса или коэффициенты преобразования Р/. [c.168] Остальные величины Ьха (а = 1, 2,. .., У) независимы. [c.168] Заметим, что символы Г с несимметричны относительно индексов Ь и с. [c.169] Получены дифференциальные уравнения движения неголономных систем в форме, указанной Схоутеном. Ясно, что при отсутствии неголономных связей уравнения (II. 101) сохраняют свою форму. Следовательно, уравнения (II. 101) можно применять для исследования движения систем как с неголономными, так и с голономными связями. [c.169] Если У равны нулю, то система уравнений (II. 10 ) определяет движение по геодезической кривой в многообразии неголономных координат. Это вытекает из содержания 210 первого тома. [c.169] Примечание. Равенства (И. 100а) и (II. ЮОЬ) определяют закон преобразования символов Кристоффеля второго рода. Как видно из равенства (II. ЮОЬ), закон преобразований отличается от закона преобразования тензорных величин ) Символы Кристоффеля образуют геометрический объект в то1 смысле, что при произвольном преобразовании системы координат они определяются своими значениями в начальной системе и законом преобразования. [c.169] Заметим далее, что при получении уравнений Схоутена из рассмотрения были исключены коэффициенты при бХд (а = = Л/+1,. .., N1) в общем уравнений динамики благодаря выбору системы неголономных кординат, в которой = 0. [c.169] Конечно, равенства (И. 104) определяют также реакции го-лономных связей. Следовательно, рассмотренный способ позволяет не обращаться к методу множителей Лагранжа для определения реакций. [c.170] Вернуться к основной статье