ПОИСК Статьи Чертежи Таблицы Фотоэффект и его использование в оптических исследованиях из "Волновая оптика " Сила тока насыщения оказалась строго пропорциональной световому потоку. Это очень важное свойство фотоэффекта, на котором основаны различные фотоэлектрические способы изме рения световых потоков. [c.432] Эти экспериментальные результаты никак нельзя объяснить, оставаясь в рамках классической физики. Действительно, предположив, что электрон вылетает из металла под действием све ТОБОЙ волны, нужно рассматривать ее как некоторую вынуждающую силу, амплитуда которой должна определять максима.льную скорость вылетевших электронов. Следовате.ньно, Кзщ должно быть пропорциональным световому потоку, а в эксперименте, как уже указывалось, установлено отсутствие такой зависимости. Непонятна также зависимость Уз д от частоты падающего света. Казалось бы, эффект должен иметь резонансный характер и наблюдаться лишь в том случае, когда частота собственных колебаний электрона в металле совпадает с частотой падающего света. Между тем эффект усиливается при v v p, а наблюдавшиеся в некоторых условиях максимумы зависимости силы фототока от частоты облучающего катод света появляются лишь н специальных условиях эксперимента и не должны влиять на установление основного механизма процесса. [c.433] Выражение (8.53) находится в полном согласии с данными опыта. Коэффициент к = hiq действительно является константой, а Fo == A/q должен зависеть от свойств катода, так как работа выхода электрона характеризуется глубиной потенциальной ямы, в которой находится электрон, и определяется свойствами данного металла. Заметим, что наблюдается совпадение между значением работы выхода, определяемым из результатов опытов по фотоэффекту, и данных, полученных при исследовании термоэлектронной эмиссии — физического процесса, в котором работа выхода играет основную роль. [c.434] Обратимся теперь к весьма важному вопросу о практическом использовании фотоэффекта. В современном. жсперименте фо-то.элс сгрпческие измерения световых потоков широко применяют во всем оптическом диапазоне. Измерения базируются на законах фотоэффекта, из которых в данном случае наиболее важна строгая пропорциональность силы тока насыщения и светового потока. Для измерений используют различные устройства, правильная оценка возможностей которых часто оказывается совсем не простой. [c.436] Для обеспечения высокой чувствительности измерений нужно аравиль.чо выбрать тип фотокатода, конструкцию фотоэлемента, условия его эксплуатации. Обычно эти данные приводятся в паспорте фотоэлемента. Чувствительность фотоэлемента характеризуют силой фототока при стандартных условиях освещения. Вакуумные фотоэлементы обычно имеют чувствительность 50 — 80 мкА/лм. [c.437] Для повышения чувствительности иногда наполняют колбу фотоэлемента каким-либо газом, не вступающим в реакцию с веществом фотокатода. В таких газонаполненных фотоэлементах выбитые из катода электроны при своем движении к аноду ионизируют атомы г аза. Образующиеся в газе ионы и электроны движутся к электродам фотоэлемента, заметно увеличивая исходный фототок. Чувствительность таких устройств велика (она достигает 500 мкА/лм), но их вольт-амперная характеристика имеет более сложный вид, чем обычная зависимость силы фототока от приложенной разности потенциалов, и часто не соблюдается пропорциональность силы фототока и светового потока. Другим недостатком газонаполненных фотоэлементов является их инерционность, приводящая к искажению фронта регистрируемого сигнала и ограничивающая возможность измерения модулированных и быстроизменяющихся световых потоков. При частоте модуляции в несколько килогерц обычно уже невозможно использование газонаполненных фотоэлементов. [c.437] Следует отметить, что обсуждаемые свойства фотоэлектрических приемников (спектральная характеристика и чувствительность, линейность, инерционность) весьма существенны для исследования возможности применения того или иного устройства при решении конкретных задач. [c.437] Для усиления фототока в фотоэлектронных умножителях использовано явление вторичной электронной эмиссии. Оно заключается в том, что бомбардировка пучком электронов поверхности металла, полупроводника или диэлектрика при некоторых условиях вызывает эмиссию вторичных электронов, которую обычно характеризуют коэффициентом вторичной эмиссии а — отношением числа выбитых электронов к числу падающих. Этот коэффициент зависит от многих параметров (вида и состояния поверхности, скорости и угла падения пучка электронов и т.д.) и для некоторых веществ может достигать больших значений (10 и выше). В частности, легко получается значительное усиление сигнала при использовании в качестве материала эмиттеров сплава сурьмы и цезия. Приводимая на рис. 8.18 схема иллюстрирует возможность усиления электронных токов за счет вторичной эмиссии. [c.438] Совершенно ясно, что важно не только создать бо.пьшее число вторичных электронов, но и сфокусировать электронные потоки так, чтобы подавляющее число выбитых электронов достигло следующего эмиттера. Фокусировка вторичных электронов осуществляется различными способами. Наибольшее распространение получили умножители, в которых конфигурация и расположение фотокатода и эмиттеров подобраны так, что создаваемые ими электрические поля обеспечивают оптимальные условия прохождения электронного пучка (рис. 8.19). [c.438] Для того чтобы предохранить фотоумножитель от посторонней засветки и экранировать электронную схему от внешних электростатических полей, его обычно помещают в специально изготовленный металлический кожух. На рис. 8.20 представлен внешний вид распространенного фотоумножителя ФЭУ-38 с кожухом. В нижней части кожуха имеется панель, на которой смонтирован делитель напряжения. На рис. 8.21 приведена фотография фотоумножителя, подготовленного к измерениям. [c.439] Сила тока на выходе ФЭУ может быгь усилена обычными радиотехническими методами. После )roio фототок фиксируется тем или иным способом. Часто используют электронные потенциометры, проводящие непрерывную запись сигнала. В последние годы для этих целей широко применяют цифровые вольтметры и другие более сложные устройства, позволяющие так регистрировать сигнал, чтобы результаты измерений сразу могли быть обработаны электронно-вычислительной машиной. Существуют методы, позволяющие измерять с помощью Ф ЭУ очень малые световые потоки (метод счета фотонов и др.). [c.439] Для того чтобы были ясны физические идеи, лежаш,ие в основе стандартных рекомендаций по повышению чувствительности фотоэлектрических измерений, нужно прежде всего разобраться в природе шума. При этом будем игнорировать некоторые достаточно часто встречаюш иес погрешности в технике эксперимента и выделим основные физические явления, приводящие к флуктуациям измеряемого фототока, которые и проявляются в виде шума при фотоэлектрических измерениях. [c.440] Используя формулы (8.54) и (8.55), можно оценить относительное влияние тех или иных параметров измерительной установки на величину полезного сигнала. Так, например, для повьппения чувствительности фотоэлектрических измерений часто используется уменьп1ение Д/ (частотная полоса пропускания), приводящее к уменьшению флуктуаций, возникающих как из-за дробового эффекта, так и теплового движения электронов. В усилителях постоянного тока это достигается увеличением произведения ВС (С — емкость конденсатора) и неизбежно приводит к увеличению времени регистрации (записи) сигнала, что не всегда желательно. [c.441] Проведенное рассмотрение природы шумов может быть отнесено как к фотоэлементам, так и к фотоумножителям. Но ряд дополнительных характеристик (в частности, стабильность усиления и возможность исключить влияние внешних полей) определяют преимущества использования фотоумножителей, обусловившие их широкое распространение при решении различных научных и технических задач. [c.442] Существенные трудности возникают при использовании фотоумножителей в инфракрасной области спектра. Как уже указывалось, наличие красной границы фотоэффекта делает в этом случае невозможным применение фотокатодов, прекрасно работающих в видимой и ультрафиолетовой областях. Для измерений в инфракрасной области используют фотодиоды, механизм действия которых основан на внутреннем фотоэффекте. [c.442] Фотодиод представляет собой полупроводниковую пластинку, внутри которой имеются области электронной (п-область) и дырочной (р-область) проводимости, разделенные электронно-ды-рочным переходом. Иа рис. 8.22 изображены две возможные принципиальные схемы фотодиода. [c.442] Под действием света, падающего на поверхность полупроводника, в нем образуются пары л-р-носителей (электрон-дырка). Неосновные носители (дырки в полупроводнике л-типа и электроны в р-полупроводнике) диффундируют в область п-р-перехода, втягиваются в него и образуют пространственный заряд по другую сторону перехода. Таким образом, происходит накопление носителей тока разных знаков в двух противоположных частях полупроводника. Однако этот процесс не может продолжаться сколь угодно долго, так как в результате накопления зарядов возникает электрическое поле, препятствующее дальнейшим переходам. Таким образом, наступает динамическое равновесие между переходами электр01 0в (дырок) в одну и другую сторону. В результате образуется постоянная разность потенциалов (фото-э. д. с. ), не превьппающая ширины запрещенной зоны в полупроводнике, выраженной в вольтах. [c.443] Фотодиод может работать в двух различных режимах с внешним источником напряжения и без него. Для измерительных целей обычно включается внешняя разность потенциа.яов. Для генерации электрической энергии (например, в солнечных батареях) используют полупроводниковые устройства без внешней Э.Д.С., работающие в так называемом вентильном режиме. [c.443] Вернуться к основной статье