ПОИСК Статьи Чертежи Таблицы Электронная теория дисперсии Исходные данные и задачи теории из "Волновая оптика " Большой заслугой Гюйгенса является создание стройной теории прохождения световой волны через кристалл, объясняющей возникновение двойного лучепреломления. Примененный им метод прост и нагляден, а как способ определения направления обыкновенного и необыкновенного лучей сохранил свое значение и по сей день. [c.131] Его теория базируется на предположении о наличии у волны в кристалле двух волновых поверхностей. Скорость обыкновенной волны Ua = с/па одинакова во всех направлениях (ей должна соответствовать сферическая волновая поверхность). Скорость необыкновенной волны и = с/п , зависит от направления, ее распространения. Она совпадает по значению с в направлении оптической оси кристалла и больше всего отличается от и в направлении, перпендикулярном оптической оси. Волновая поверхность необыкновенной волны для одноосного кристал.аа имеет вид эллипсоида вращения, который в направлении оптической оси должен касаться сферической волновой поверхности обыкновенной волны. Для отрицательного кристалла п , п,, следовательно, Uo Uf,, т.е. шар вписан в эллипсоид вращения. Для положительного кристалла и и волновая поверхность обыкновенной волны (шар) охватывает волновую поверхность необыкновенной волны (эллипсоид вращения). На рис. 3.18 представлены оба этих случая. [c.131] В основе объяснения двойного лучепреломления лежит принцип Гюйгенса, в котором постулируется, что каждая точка, до которой доходит световое возбуждение, может рассматриваться как центр соответствующих вторичных волн. Для определения волнового фронта распространяющейся волны в последующие моменты времени следует построить огибающую этих вторичных волн. [c.132] О проводится полуокружность радиусом ОС = U2M ( где М — время, которое должна была затратить волна, чтобы пройти путь АВ в первой среде). Очевидно, что АВ = ujAt и ОС = uz/u )AB. Ту же операцию можно повторить для точек 0 , О и т.д. Огибающей всех этих полуокружностей служит прямая BD, перпендикуляр к которой (луч) составляет угол ф2 с нормалью к границе раздела. Отсюда получаются законы отражения и преломления световых волн, и, следовательно, из принципа Гюйгенса можно вывести законы геометрической оптики. Вопрос о том, почему этот принцип (без дополнений, сделанных Френелем) нельзя положить в основу волновой оптики, подробно рассмотрен в гл. 6. [c.132] Такую же методику построения волнового фронта можно применить для описания перехода волны из изотропной среды в анизотропную. Если для исследуемого криста.лла известно направление оптической оси, то построение в нем двух волновых поверхностей (обыкновенной и необыкновенной) не представит труда. [c.132] Приведем еще одно построение для случая нормального падения световой волны на естественную грань кристалла исландского шпата (рис. 3.21). Здесь волновые фронты обыкновенной и необыкновенной волн совпадают, а направления лучей различаются, поскольку двойное лучепреломление имеется и в этом случае. [c.133] В целом в современной физике построение Гюйгенса может рассматриваться как следствие электромагнитной теории света, существенно облегчающее ее применение для решения многих конкретных задач. [c.134] В этой главе рассмотрено действие поля световой волны на движение заряженных частиц, связанных в атоме квази ругими силами. Решение данной задачи позволит понять разнообразные физические явления, истолкование которых невозможно с позиций классической электромагнитной теории света. Так, например, кроме подробно рассмотренной дисперсии вещества, привлечение электронной теории позволяет рассмотреть основы нелинейной оптики, своеобразное свечение ряда веществ при возбуждении их частицами, скорость которых удовлетворяет соотношению и с/п, количественно исследовать вращемие плоскости поляризации в веществе, помеп енном в продольное магнитное поле, а также решить ряд других актуальных задач. [c.135] Соединение электронных явлений и электромагнитной теории света является заслугой Лоренца — крупнейшего физика, работавшего на рубеже XIX и XX вв., хотя появлению этой фундаментальной теории предшествовал ряд наблюдений, опытов и попыток их обобщения. Создание электронной теории дисперсии послужило шагом к развитию феноменологической электромагнитной теории путем дополнения ее анализом микропроцессов, происходящих в веществе под действием светового поля. Такое описание приводит к хорошему согласию эксперимента и теории, базирующейся на представлениях классической физики. Вопрос в том, как трансформируются введенные понятия при квантовом описании процессов в веществе, требует обсуждения. [c.135] На экране показан спектр, возникающий в результате совместного действия обеих призм, на котором видно, как показатель преломления стекла зависит от длины волны проходящего света. Правда, недостаточная точность этого метода скрещенных призм привела Ньютона к неверному заключению о том, что относительная дисперсия для всех прозрачных тел одинакова. Как хорошо известно (см., например, рис. 6.71), у разных сортов стекла величины п(Х) и дп(к)/дА различны, что и позволяет создавать ахроматические объективы. [c.136] Это соотношение хорошо описывает зависимость показателя преломления от длины волны для различных прозрачных тел. В большинстве случаев достаточно точная аппроксимация получается при использовании лишь двух первых членов (т.е. из опыта нужно определять только две константы). [c.136] Очевидно, что обоснование подобной зависимости п(Х) для прозрачных тел — это одна из главных задач, которые возникают при соединении электроннЕлх явлений и электромагнитной теории света. [c.136] Нуяшо также выяснить, почему известная формула Максвелла и==с/ V к в одних случаях (инертные газы, кислород и др., видимая область спектра) превосходно соответствует опытным данным, а в других приводит к резкому расхождению с результатами эксперимента. [c.136] Очевидно, что аномальная дисперсия возникает не случайно, а непосредственно связана с наличием полос поглощения у исследуемого вещества. Она отсутствует в той области спектра, где нет полос поглощения. Так, например, спектры всех прозрачных тел (многие газы, вода, стекло, кварц и др.) не имеют полос поглощения в видимой области и у них в этом диапазоне наблюдается только нормальная дисперсия dnjdX 0). В ультрафиолетовой и инфракрасной областях многие из тел интенсивно поглощают электромагнитное излучение — там должна наблюдаться также и аномальная дисперсия. [c.137] Во второй половине XIX в. был осуществлен ряд попыток теоретически истолковать явление аномальной дисперсии и найти выражения, связывающие дисперсию и поглощение света. Наиболее успешны были работы Зельмейера, получившего в рамках теории Френеля формулу, достаточно хорошо описывающую изменение показателя преломления в непосредственной близости к линии поглощения. Согласие фо )Мулы Зельмейера с опытом детально исследовалось в работах Д. С. Рождественского. Предложенная им оригинальная методика (метод крюков) позволила проводить эти измерения с большой точностью. В 40-х годах нашего столетия Г.С. Кватер показал, что исследуемая ( юрмула хорошо согласуется с измерениями показателя преломления паров натрия даже на расстоянии всего 0,1 А от центра линии поглощения. [c.138] Вывод основных соотно1пений для аномальной дисперсии приведен ниже при изучении действия электромагнитной волны на движение связанных электронов атома с учетом их торможения. В гл. 5 мы более подробно остановимся на экспериментальных исследованиях явления аномальной дисперсии в парах и газах, проводящихся методами интерферометрии. [c.138] Таким образом, выясняется еще один круг проблем, которые должны быть решены при рассмотрении электронных явлений. К сказанному следует добавить, что при этом удается также количественно описать вращение плоскости поляризащ1и электромагнитной волны в продольном магнитном поле и др угие физические явления. [c.138] Вернуться к основной статье