ПОИСК Статьи Чертежи Таблицы Плоские монохроматические волны и возможность их экспериментального осуществления из "Волновая оптика " Основные свойства электромагнитных волн (поперечность и ортогональность векторов Е и Н) были получены в 1.1 из прямого анализа уравнений Максвелла, причем молчаливо предполагалось, что существование электромагнитной волны бесспорно. Для более строгого доказательства того, что электромагнитное поле распространяется в виде волны, покажем, что из уравнений Максвелла для однородной непроводящей среды следует волновое уравнение. [c.26] Вернемся теперь к выявлению тех ограничений, которые связаны с введенными вьипе упрощениями в постановке задачи. Выше уже указывалось, что закрепление направления колебаний векторов Е и Н соответствует переходу от эллиптической к линейной поляризации электромагнитной волны. Постановка одномерной задачи [Е = p(2,f ] фактически означает использование плоских волн, в этом случае излучению с плоским волновым фронтом соответствует в оптике параллельный пучок лучей. Отклонимся от вопроса о том, сколь реально экспериментальное осуществление плоской волны, и исследуем подробнее ее свойства. [c.28] Соотношение (1.24), описывающее монохроматическую волну, служит одним из возможных решений волнового уравнения, и такая волна обязательно должна быть поляризована (в общем случае эллиптически). Итак, мы пришли к чрезвычайно важному утверждению, глубокий смысл которого заключается в том, что поляризация монохроматической волны является прямым следствием уравнений Максвелла. [c.29] Однако опыт показывает, что если не применять специальных приспособлений, то в оптических экспериментах практически всегда мы имеем дело с неполяризованным светом. Почему и как нарушается поляризация электромагнитной волны, рассказано ниже. [c.29] В дальнейшем будет подробно исследован вопрос о скорости электромагнитной волны (см. 1.4). При этом показано, что введенного простого понятия фазовой скорости недостаточно для описания сложных процессов распространения электромагнитной волны в реальной среде, так как этот процесс не сводится к определению скорости какой-либо точки, а связан со скоростью распространения некоего состояния. [c.30] Легко найти также соотношение между значениями векторов Е и Н в каждый момент времени и в каждой точке пространства. [c.30] Заменяя и = с/ Гщл., имеем Я = V . Для диэлектриков, как уже указывалось, обычно ц = 1 и, следовательно, Н = Vk в вакууме Н — Е. [c.30] Так как в свободной волне векторы Е и Н синфазны, т.е. одновременно и в одних и тех же точках пространства достигают максимального или минимального значения, то легко изобразить распространение линейно поляризованной волны на графике (рис. 1.5), избрав в качестве осей координат направления векторов Е (ось X) и Н (ось У) и направление распространения (ось Z). Совершенно аналогичная картина получается для зависимости от времени поля линейно поляризованной волны, наблюдаемой в определенной точке пространства. [c.30] Следует иметь в виду, что векторы Е, Н и направление распространения всегда составляют в свободной волне правый винт. [c.30] Это очень важное свойство станет более очевидным, когда будет введен вектор, характеризующий распространение энергии. Часто такую свободно распространяющуюся волну называют бегущей, чтобы отличить ее от стоячей волны (см. 2.1), где синфазность векторов Е и Н не имеет места. [c.31] Заметим, что полученные результаты справедливы для любого значения т, что и выявляет универсальность использования метода. [c.31] Теперь необходимо более подробно исследовать эти свойства электромагнитных волн. Этими основными характеристиками служат наличие плоского фронта, монохроматичность и существование определенной поляризации излучения. Разберем их последовательно, уделяя особое внимание вопросу о том, в какой степени такую абстракцию можно реализовать на опыте. [c.31] Фронт волны, создаваемой локальным источником на достаточно большом расстоянии от него, можно считать плоским. Амплитуда колебаний для расходящейся волны уменьшается с увеличением расстояния от источника. [c.31] Укажем, что излучение лазера (оптического квантового генератора) в наибольшей степени отвечает сформулированным требованиям — расходимость пучка очень мала, и излучается обычно строго определенная длина волны. Однако и это утверждение требует более подробного обсуждения. [c.32] Наименьшую расходимость имеют газовые лазеры. Она составляет для них примерно К). Использованием относительно простой оптической системы (телескопической насадки) можно еще уменьшить расходимость излучения газового лазера. [c.32] Значение принятой идеализации (т = оо) велико именно потому, что любой импульс можно представить в виде суммы (конечной или бесконечной) гармонических функций вида oi os(fiiii — 9j). Существуют серьезные основания, в силу которых разложение по гармоническим функциям представляется с точки зрения физика наиболее целесообразным по сравнению с любой другой возможной математической операцией. Мы еще вернемся к вопросу о разложении излучения в спектр (см. 1.6), а сейчас имеет смысл выяснить степень монохроматичности излучения тех или иных источников электромагнитных волн и указать основные способы монохроматизации радиации (т. е. уменьшения интервала частот Av). [c.33] Как уже упоминалось, для любой радиации следует различать сплошной и линейчатый спектры. В диапазоне УКВ переход от вибратора Герца к современным источникам (клистрон, магнетрон) означает переход от сплошного спектра к линейчатому. Клистрон излучает волну строго определенной длины (например, - я 3 см). Измерить эту длину нетрудно (см. 2.1), h i определение степени монохроматичности такого источника требует достаточно тонких опытов, рассмотрение которых увело бы нас далеко за рамки нашего курса. [c.33] Существуют лазеры, излучающие эиерг ию импульсами, длительность и частоту повторений которых можно варьировать. В частности, очень распространены импульсные лазеры на рубине (/. а 0,69 мкм) и неодимовом стекле (/ г 1,06 мкм), мощность которых может достигать нескольких мегаватт, а в специальном режиме гигантских импульсов — значений ]() Вт и более. Однако при столь большой мощности уширяется спектр и уменьшается монохроматичность излучения. [c.35] За последние годы существенно развилась физика лазеров, включающая в себя как создание новых типов лазеров, так и использование их для решения различных научных и практических задач. Указанные вьппе свойства лазерного излучения (в первую очередь монохроматичность и направленность) определяют возможность применения этих новых источников света для передачи сигналов, взаимодейстьши света с веществом и других актуальнГ)1х задач. [c.35] Вернуться к основной статье