ПОИСК Статьи Чертежи Таблицы Основные свойства электромагнитных воли Система уравнений Максвелла из "Волновая оптика " Следует иметь в виду, что физики не едины в вопросе о том, каким должно быть содержание университетского курса обп1ей физики, и за последнее время изданы книги, которые могут быть охарактеризованы как поисковые. Эта книга также является поиском способа современного изложения такого классического разде.па физики, как Волновая оптики . [c.6] При решении этой задачи возникают трудности и часто приходится принимать компромиссное решение. Так, например, при исс.тедовании проблем классической волновой оптики нельзя игнорировать открывшуюся ныне возможност) использования когерентных источников света, хотя затруднительно детальное исс.педо-вание фундаментального понятия когерентности (как это было сделано, например, в монографии Борна и Вольфа, рассчитанной на 6o. iee подготовленного читателя). [c.6] Борн М., Вольф Е. Принципы оптики. М., 1970. [c.6] При таком построении курса естественным является дальнейший переход к объяснению разнообразных физических явлений, связанных с учетом действия поля световой волны на электроны и ионы. Эти приложения электронной теории существенны для решения многих принципиальных вопросов кроме традиционного рассмотрения электронной теории дисперсии дается представление о молекулярной теории вращения и решаются некоторые другие 1адачи, в частности проводится ознакомление с основами нелинейной оптики. [c.7] Для понимания интерференции и дифракции электромагнитной волны вводятся квааимонохроматические волны ( хаотически модулированные колебания ). При введении этих понятий законы возникновения и распространения электромагнитных волн дополняют условиями обрыва колебаний оптических электронов в атоме и другими причинами, onpeдeляюn ими время когерентности. В рамках этой схемы обосновывается когерентность колебаний для точечных источников свети в пределах одного цуга волн, а затем выявляются условия пространственной когерентности, при которых может наблюдаться стационарная интерференционная картина от реальных источников. [c.7] Завершает изложение основ электромагнитной теории света рассмотрение оптических экспериментов с движущимися телами. Здесь кратко охарактеризованы экспериментальные основания специальной теории относительности и проанализированы следствий гюстулатов Эйнштейна, позволяющие полностью истолковать все корректные опыты, как предшествовавшие созданию этой фундаментальной теории, так и выполненные во второй половине XX в. Подробно рассмотрены приложения эффекта Доплера, позволяющие выявить особенности оптических. экспериментов и невозможность использования гипотетического эфира даже в качестве системы отсчета. [c.8] Расширен раздел курса, иосвя1Ценный рассмотрению основ фотонной теории, позволивший характеризовать важнейшее свойство света - его дуализм - и оценить границы применимости электромагнитной теории света, изложению которой посвящены основные разделы этой книги. Кроме того, включение сведений о термодинамике излучения, формуле Планка, законах фотоэффекта и свойствах приемников света должно способствовать более широкому использованию этого учебного пособия в университетах и втузах. [c.8] При работе над первым и вторым изданиями книги я широко пользовался дружескими советами В. А.Фабриканта, С.Э.Фриша, М. А. Ельяшевича, М. П. Чайка и других моих товарищей по работе. Всем им я искренне благодарен. За помощь в оформлении третьего издания автор благодарит Ф.А.Ялышеву. [c.8] Оптика — учение о физических явлениях, связанных с распространением коротких электромагнитных волн. Как известно, длина любой волны л., ее частота v, скорость в среде и и период колебаний Т связаны соответственно соотношением X = u/v = иТ. Для волн, которые будут рассматриваться нами в вакууме, и = с = 3 10 см/с. [c.9] Методы возбуждения и регистрации радиоволн приведены в курсах электро- и радиотехники и имеют лишь косвенное отношение к проблеме распространения коротких электромагнитных волн. Важно лишь отметить, что для частот v 10 Гц (к 30 см) электронная лампа типа триода, на использовании которой до недавнего времени была основана классическая радиотехника, уже становится непригодной. Действительно, в этой области частот время пролета электрона от катода до анода сравнимо с периодом изменения электромагнитного поля и сетка уже не может управлять анодным током. [c.10] Ультракороткие волны (УКВ) представляют чрезвычайный интерес для решения многих важнейших технических задач. Это связано с тем, что для передачи энергии и получения направленного излучения выгодно увеличивать частоту колебаний (см. 1.5). Революция в технике УКВ произошла в 1930 — 1940 гг., и теперь устройства, на которых были проведены знаменитые опыты Герца, Попова и др., представляют лишь исторический интерес. Основной недостаток передатчика Герца — это затухание колебаний и большая ширина спектра излучаемых частот. В современных генераторах УКВ (клистронах и магнетронах) взаимодействие электронного пучка и волн, возникающих в резонаторе, происходит по-иному, что позволяет поднять верхнюю границу частот (v 30 ГГц) и резко увеличить мощность сигнала, достигающего иногда десятков миллионов ватт в им пульсе. Положительными свойствами подобных излучателей являются высокая монохроматичность электромагнитной волны (излучается строго определенная частота) и крутой фронт временных характеристик сигнала. В качестве приемника УКВ-излучения обычно используют вибратор или объемный резонатор с кристаллическим детектором, имеющим резко нелинейные свойства, с последующим усилением низкочастотного сигнала. [c.10] Оптический диапазон спектра (инфракрасные, видимые и ультрафиолетовые лучи) представляет большой интерес, но мы будем предельно кратки при общем описании методов возбуждения и регистрации спектра в этой области, так как в дальнейшем придется детально рассматривать многие вопросы, о которых здесь лишь упоминается. [c.11] Чрезвычайно большие возможности открываются при использовании в оптических экспериментах лазеров (квантовых оптических генераторов), излучающих обычно одну спектргшьную линию большой яркости. Особые свойства таких источников света (в первую очередь когерентность) подробно обсуждены ниже, а сейчас укажем, что сам факт их существования заставляет по-иному подходить к изучению многих оптических явлений. [c.11] Отличительная черта метода с использованием термоэлектрических элементов — отсутствие селективной чувствительности к излучению разных длин волн, характерной для всех остальных приемников света. Это, с одной стороны, громадное преимущество термоэлектрических приемников света, а с другой — их недостаток. В самом деле, используя другие явления (например, фотоэффект), можно получить хотя и селективные, но более чувствительные для данной области спектра приемники радиации. [c.12] Столь же условна граница между ультрафиолетовой и видимой частями спектра, которую обычно считают равной 4000 А. Трудно также говорить о границе между инфракрасным излучением и УКВ, поскольку миллиметровые волны можно регистрировать и исследовать как с помощью обычных оптических методов, так и способами, характерными для УКВ-диапазона, что было показано еще в начале XX в. Условно, наконец, и различие между короткими ультрафиолетовыми волнами и мягкими рентгеновскими лучами, что было ярко продемонстрировано в работах А. П. Лукирского. [c.13] Рентгеновские лучи характеризуются весьма малой длиной волны (X 100 А), а их свойства сильно отличаются от свойств других видов электромагнитного излучения. Рентгеновские лучи возникают в результате бомбардировки антикатода разрядной трубки быстрыми электронами. Кинетическая энергия электронов == qll и проникающая способность рентгеновских лучей возрастают с увеличением положенной разности потенциалов и. [c.13] Вернуться к основной статье