ПОИСК Статьи Чертежи Таблицы Принципы построения схем зажигания газоразрядных приборов из "Источники питания лазеров " В начальном состоянии электрическая проводимость газоразрядного прибора (ГРП) незначительна, поэтому он представляет разрыв для электрической цепи. Включение прибора осуществляется инициированием, в результате которого зажигается разряд в газе и промежуток между электродами прибора приобретает электрическую проводимость. Повышение электрической проводимости газа достигается его ионизацией. Ионизировать газ можно путем сообщения ему некоторой дополнительной энергии. Вводить энергию в газоразрядный промежуток можно различными способами [4] статическим электрическим полем, высокочастотным электрическим полем, высоковольтными импульсами, интенсивным световым облучением, облучением рентгеновским и радиоактивным излучением, нагреванием (термоионизацией) и т. п. [c.5] При некотором значении равном статическому напряжению t/ T, возникает самопроизвольный пробой разрядного промежутка, приводящий к образованию каналов с высокой проводимостью и Зажиганию разряда. Для возникновения стационарного (в непрерывном режиме) или квазистационарного (в импульсном режиме) горения разряда образования проводящих каналов еще само по себе не достаточно [5] необходимо, чтобы после появления таких каналов основной источник, питающий ГРП, подхватил и удержал газовый разряд в заданном режиме. Подхват будет иметь место, если от источника питания подается на газоразрядный промежуток разность потенциалов не менее так называемого напряжения зажигания, т. е. f/пит заж. [c.5] Особенность высокочастотного зажигания состоит в том, что с увеличением частоты инициирующего сигнала напряжение, при котором возникает пробой, уменьшается и при некоторой частоте достигает минимума, далее с увеличением частоты напряжение про- боя снова возрастает [6]. При коротких разрядных промежутках (не более нескольких сантиметров) минимум напряжения пробоя приходится на область частот 10—20 МГц. При длинных промежутках минимум смещается к частоте в 1 МГц и ниже [7]. Это может быть объяснено тем, что с повышением частоты инициирующий сигнал все больше шунтируется распределенной емкостью длинной газоразрядной трубки. Кроме того, с ростом частоты следует учитывать необходимость повышения инициирующего напряжения для компенсации дополнительно возникающих потерь энергии сигнала. Так, например, с увеличением частоты часть инициирующего напряжения может падать на индуктивном сопротивлении подводящих проводов,. С повышением частоты растут также потери инициирующего сигнала на электромагнитное излучение. Мощность этого излучения пропорциональна току, квадрату частоты, квадрату длины проводов и зависит от магнитной и диэлектрической проницаемостей среды. Из расчетов видно, что при частоте 10 МГц и длине проводов 10 м потери на излучение достигают 807о, ири 1 МГц — 20%, при 0,1 МГц —2%. [c.6] Весьма широкое распространение получило зажигание ГРП с помощью импульсов с амплитудой инициирующего напряжения t/нн, значительно превышающей напряжение статического пробоя на постоянном и высокочастотном электрическом полях [1, 3, 5, 7]. Этот режим реализуется приложением одиночного высоковольтного импульса или импульса в виде затухающих колебаний от маломощной схемы основной разряд поддерживается силовым источником питания. На практике, в силу простоты формирования, используется, как правило, импульс в виде затухающих колебаний. Далее -будут рассмотрены схемы именно с такой формой импульса, тем б.олее, что особых преимуществ прямоугольный импульс ие имеет. [c.6] Зажигание ГРП зависит не только от степени перенапряжения на газоразрядном промежутке, но и от длительности инициирующего импульса и частоты затухающих колебаний в нем. Длительность Этого импульса должна быть больше времени зажигания разряда, складывающегося из времени запаздывания начала развития пробоя и времени формирования канала высокоионизированной плазмы. Увеличение амплитуды и длительности импульса. равносильно увеличению энергии в нем. С увеличением энергии в инициирующем импульсе уменьшается напряжение зажигания t/заж. Предел уменьшения t/заж достигается при увеличении энергии до значения, способного вывести разряд на рабочий, стационарный участок при этом Из т приближается к значению напряжения погасания U-a. Очевидно, что импульсная мощность должна выть сравнима с мощностью основного источника питания. В особых случаях, когда требуется иметь минимально возможное 1/заж, увеличение импульсной мощности находит практическое применение (схемы с двухступенчатым зажиганием). Если особых требований к величине t/заж не предъявляется, то амплитуду инициирующих импульсов t/ин выбирают в 1,5—2 раза выше напряжения пробоя ГРП. Частота затухающих колебаний в импульсе, как рассматривалось ранее, влияет на t/заж для конкретных ГРП может быть найдено такое ее значение, при котором t/заж становится наименьшим. [c.6] Заметное влияние на зажигание оказывают внешние иоиизатп ры [6]. При Наличии ионизаторов (например, слабы высокочастотные поля, освещение газоразрядного промежутка, подогрев катода ГРГТ, рентгеновское излучение и т. п.) напряжение пробоя понижается, становится более стабильным, а также уменьшается запаздывание между моментом приложения инициирующего напряжения и началом зажигания. [c.7] Случае схемы зажигания делятся яа схемы внешнего зажигания, внутреннего, последовательного, параллельного и смешанного [5, 7]. [c.7] Схема внутреннего зажигания (рис. 1.2,6) предназначена для включения ГРП с электродом зажигания, расположенным в полости разряда (впаян в стенку ГРП). [c.8] При отсутствии электрода зажигания схема зажигания включается последовательно с ГРП и источником питания (рис. 1.2,е) или параллельно к основным электродам ГРП (рис. 1.2,г). Чтобы источник питания не шунтировал сигнал инициирования, в силовую цепь включают заграждающий фильтр 2ф либо другой элемент. [c.8] Для зажигания ГРП часто применяются смешанные схемы в виде комбинации схем, приведенных на рис. 1.2. [c.8] Среди разновидностей схем зажигания можно выделить группы с одноступенчатым и двухступенчатым зажиганием. В схемах с одноступенчатым зажиганием инициирующий сигнал формирует непосредственно такой вспомогательный разряд, который способен развиться в стационарный с помощью одного лишь основного источника питания. Если выполнение этого условия затруднено, то применяют более мощную схему зажигания либо переходят на двухступенчатое зажигание. При двухступенчатом зажигании первоначальный вспомогательный разряд формируется, как и при одноступенчатом, с помощью маломощного сигнала инициирования, а перевод разряда в стационарный режим обеспечивает вторая ступень далее вступает в действие основной источник питания, поддерживающий рабочий режим горения разряда. Для реализации второй ступени зажигания должно быть предусмотрено дополнительное устройство, что усложняет в целом схему питания ГРП. Вместе с тем,. во многих случаях такое усложнение вполне оправдано, а часто может явиться единственным приемлемым решением. [c.8] Вернуться к основной статье