ПОИСК Статьи Чертежи Таблицы Прогнозирование ресурса и механика разрушения из "Прогнозирование ресурса машин и конструкций " Если исключить из рассмотрения выходы из строя машин и конструкций вследствие резких нерасчетных перегрузок, природных воздействий, не поддающихся контролю, грубых ошибок при проектировании или эксплуатации или неблагоприятного сочетания перечисленных факторов, то остальные случаи наступления предельных состояний можно отнести преимущественно к одной из двух больших групп. Первую группу образуют предельные состояния, наступившие в результате постепенного накопления в материале рассеянных повреждений, приводящих к зарождению и развитию макроскопических трещин. Часто зародыши и очаги таких трещин, вызванные несовершенством технологических процессов, содержатся в объекте до начала его функционирования. Причиной выхода объекта из строя является развитие трещин до опасных или нежелательных размеров. Если трещина не обнаружена своевременно, ее развитие может привести к аварийной ситуации. Вторая группа состоит из предельных состояний, связанных с чрезмерным износом трущихся деталей и поверхностей, находящихся в контакте с рабочей или окружающей средой. Предельные состояния первой группы типичны для несущих элементов, работающих при высоких уровнях общей нагруженности. Случаи, когда несущие элементы испытывают интенсивное изнашивание, сравнительно редки. Рассмотрим более детально первую группу предельных состояний. [c.13] Классический пример напряженных объектов — сосуды давления. Эти объекты встречаются почти во всех областях техники, в частности, в энергетике, на транспорте, в химической и нефтегазовой промышленности. Сосуды давления обычно рассчитывают на большие сроки службы. Стенки сосудов работают в условиях растягивающих напряжений, часто при повышенных температурах, нередко в контакте с активными и агрессивными средами. Для безопасности работы необходимы достаточно большие запасы прочности. Однако толщина сосудов должна быть ограниченной из-за технологических, экономических и других соображений. Иногда масса сосудов давления ограничена условиями технической осуществимости проекта в целом. [c.13] Различные (ползучесть, ошибки при эксплуатации и т. л.). [c.14] Относительно небольшую долю усталостных трещин (24 %) можно оъяснить тем, что амплитуды напряжений и (или) чйсла циклов в сосудах давления обычно не бывают слишком большими. Обращает на себя внимание высокий процент врожденных трещин, по-видимому, технологического происхождения (29 %). Этот вывод согласуется со следующим наблюдением около 64 % общего числа отказов паровых котлов приходится на отказы котлов со сроком службы до 10 лет (для анализа были взяты данные по котлам, прослужившим до 40 лет). [c.14] Теоретической основой для прогнозирования ресурса в условиях накопления повреждений и развития трещин служит механика разрушения. Этот раздел механики материалов и конструкций находится сейчас в состоянии интенсивного развития, главное направление которого — механика тел, содержащих трещины. Хотя первые классические работы по механике трещин были выполнены в 20-е годы, интерес к проблеме возник лишь в последние десятилетия. Можно назвать по крайней мере две причины, вызвавшие этот интерес. Во-первых, в течение длительного времени экспериментаторам не удалось систематизировать и научно обобщить результаты испытаний материалов и конструкций при различных силовых, тепловых и прочих воздействиях. Появилась необходимость иметь более прочную теоретическую основу для описания механизмов разрушения, чем инженерные критерии прочности. Во-вторых, повысился технический уровень наблюдений над объектами в процессе эксплуатации, а также над объектами, пришедшими в аварийное состояние. Обнаружено, что во многих случаях узлы и конструкции продолжают успешно функционировать несмотря на наличие в них усталостных трещин и других трещиноподобных дефектов. Трещины могут быть устойчивыми, их рост можно контролировать и прогнозировать. Чтобы обоснованно судить о возможности эксплуатации технических объектов с механическими повреждениями, надо было развивать механику разрушения. [c.15] Механика тел с трещинами располагает большим числом достоверных и фундаментальных результатов, механика же рассеянного повреждения до последнего времени оставалась полуэмпиричёской. До последнего времени не было стыковки между описанием процесса накопления повреждений и процессом роста макроскопических трещин. Пока эта стыковка не была достигнута [7, 11 ], приложение механики разрушения к задачам прогнозирования ресурса вызывало затруднения. В связи с несовершенством средств неразрушающего контроля и риском пропуска трещин это замечание отчасти справедливо также по отношению к прогнозированию индивидуального ресурса. [c.16] Различают два подхода к построению теорий в естественных и прикладных науках — полуэмпирический (феноменологический) и структурный. Первый подход основан на-обобщении результатов наблюдений и экспериментов и не ставит целью объяснение или полное описание существа явлений. Структурный подход состоит в разработке моделей, которые позволяют описать и объяснить явления исходя из внутренней структуры рассматриваемых объектов. Эти подходы тесно связаны между собой. Классическим примером служат соотношение между термодинамикой, дающей феноменологическое описание процессов преобразования энергии, и статистической физикой, основные разделы которой дают объяснение термодинамических явлений с учетом атомно-молекулярной структуры. [c.16] В механике разрушения возможны как полуэмпирические, так и структурные подходы к построению моделей. В частности, модель макроскопической трещины — пример подхода, который не учитывает элементы структуры реальных материалов. Другими примерами служат способы описания процессов накопления повреждений при циклических и длительных нагрузках, основанные на введении мер повреждений. Эти меры не допускают прямой интерпретации на уровне структуры материала. Более того, мера повреждений вообще не имеет четкого физического истолкования, кроме, может быть, двух ее предельных значений, отвечающих начальному (неповрежденному) состоянию и состоянию полного исчерпания ресурса. [c.16] Полуэмпирические и структурные модели имеют и достоинства, и недостатки. Полуэмпирические модели более просты и, будучи результатом обобщений опытных данных, больше приспособлены для обработки экспериментальных результатов и их представления в аналитической форме. Полуэмпирические модели могут оказаться непригодными за пределами области, в которой получены лежащие в их основе опытные данные. Это следует учитывать, например, при оценке больших значений ресурса, при планировании ускоренных и форсированных испытаний и т. п. Перенос результатов испытаний образцов и малых моделей на натурные крупногабаритные конструкции также может встретить затруднения из-за масштабного эффекта, присущего многим явлениям повреждения и разрушения. Структурные модели этим недостатком в принципе не обладают. Они дают основания для более обоснованной экстраполяции результатов как во времени, так и в геометрическом масштабе, позволяют возместить недостаток сведений о статистической изменчивости результатов, присущей большинству ресурсных испытаний. Вместе с тем структурные модели сложнее полуэмпирических и требуют значительно большего объема информации. Для непосредственного получения такой информации необходимы эксперименты на уровне структуры материала, что, как правило, лишено практического смысла. Исключение составляют искусственные композиционные материалы, сведения об элементах структуры которых часто бывают известны еще до создания материала. [c.17] Естественный путь для проверки структурных моделей и оценки входящих в них параметров основан на сопоставлении этих моделей с соответствующими полуэмпирическими моделями, а также с результатами макроскопического эксперимента. Одна из целей данной книги — дать совместное изложение обоих классов моделей. [c.17] Вернуться к основной статье