ПОИСК Статьи Чертежи Таблицы Бигармоническая накачка от спектрохронографии и измерения огибающих когерентного и некогерентного откликов к прямой регистрации оптических колебаний из "Оптика фемтосекундных лазерных импульсов " Бигармоническая накачка от спектрохронографии и измерения огибающих когерентного и некогерентного откликов к прямой регистрации оптических колебаний. Одно из главных приложений фемтосекундной оптической техники — спектроскопия быстро протекающих процессов. Сейчас это уже сформировавшаяся область со специфическими методическими приемами (эффективно используется как линейный, так и нелинейный отклики среды), с разнообразной экспериментальной техникой. В этом параграфе мы проиллюстрируем ее возможности на примере когерентной спектроскопии рассеяния света — варианте нелинейной лазерной спектроскопии, пожалуй, наиболее тесно связанном с волновой нелинейной оптикой [46, 58]. [c.146] Идею метода проще всего пояснить на примере когерентной антистоксовой спектроскопии комбинационного рассеяния света основные физические представления по существу очень близки к развитым в предыдущем параграфе. В отличие от вынужденного комбинационного рассеяния для спектроскопических целей используется контролируемое возбуждение внутримолекулярных колебаний с помощью бигармони-ческой накачки стоксова волна приходит на исследуемую среду от внешнего источника, а интенсивность накачки выбирается ниже порога вынужденного рассеяния. [c.146] На рис. 3.21 иллюстрируется наиболее широко используемый вариант когерентной активной спектроскопии — так называемая когерентная антнстоксова спектроскопия рассеяния света. Две волны накачки с частотами oi, сог (разность oi—— частоте молекулярных колебаний) возбуждают когерентные молекулярные колебания, которые затем зондируются пробной волной. [c.146] Здесь открываются новые физические и технические возможности особый интерес представляет использование предельно коротких, фемтосекундных импульсов. С их помощью удается не только проследить в реальном времени за релаксацией энергии и фазы оптического возбуждения в газах и конденсированных средах, но прямо измерить саму форму молекулярных колебаний, т. е. создать стробоскопический оптический осциллограф, регистрирующий форму элементарного возбуждения среды. [c.147] Вернуться к основной статье