ПОИСК Статьи Чертежи Таблицы Зависимости механики континуума в матричном представлении из "Математическое моделирование процессов обработки металлов давлением " Координатной линией в данной системе криволинейных координат называется множество точек, имеющих одну из своих криволинейных координат постоянной ( i= onst или z/2= onst). Через каждую точку М проходят две координатные линии (рис. 8). [c.76] Пусть система криволинейных координат ортогональна. [c.77] Квадрат длины элемента dx dS = dxj -f dxl = dt + dti . [c.78] Пусть D — конечная односвязная область, ограниченная замкнутым контуром S, а Д —круг радиусом г=1 с центром в точке 5=0. Полагая, что точки 2=0 и =0 соответствуют одна другой, найдем, что кривые r= onst на плоскости 2 представляют собой семейство замкнутых линий, окружающих точку 2=0. Кривые со= onst-выходят из точки 2=0 и кончаются на контуре S. Сам контур S соответствует г — (рис. 11).. [c.80] Аналогичная картина получится в случае, когда область D ограничена двумя замкнутыми контурами 5i и и отображается на круговое кольцо ааг ,. [c.80] Величины ГИИ можно рассматривать как криволинейные координаты точек х, у) плоскости г. [c.80] Из формул (11.57) и (11.58) следует, что любой совокупности Рг соответствует единственная совокупность хи и наоборот. Переменные Рг определяют положение точки М в пространстве единственным, образом и поэтому называются криволинейными координатами точки М. [c.81] Поверхности уровня функций р (х) образуют некоторые семейства поверхностей. Через каждую точку М пространства проходит по одной поверхности каждого семейства (рис. 12). Назовем эти поверхности координатными поверхностями. Линии пересечения этих двух координатных поверхностей назовем координатными линиями. Так, например, две координатные поверхности р2(- ь Х2, дсз) = onst и Рз= (л ь дгз) = onst пересекаются по координатной линии Pi. Вдоль нее меняется только координата Pi, а координаты Рз и Рз сохраняют постоянное значение. [c.81] Ограничимся в дальнейшем рассмотрением наиболее важного для приложений случая криволинейных ортогональных координат. При этом координатные линии в каждой точке перпендикулярны. [c.81] Будем называть а криволинейными o taвляющuмu вектора а Или же проекциями вектора а на оси криволинейных координат. [c.82] Направление векторов локального базиса меняется при переходе к другой точке пространства, в то время как направление ортов вг декартовой прямоугольной системы координат остается неизменным. [c.82] В качестве примера рассмотрим цилиндрическую и сферическую системы координат. [c.82] СФЕРИЧЕСКАЯ СИСТЕМА КООРДИНАТ, л о),. / (г 0, 0 x ). [c.83] Квадрат длины элемента йдг dS = dxf + == dr r sin xda -j- r dx. [c.83] Будем последовательно, рассматривать эти величины. [c.85] Вернуться к основной статье