ПОИСК Статьи Чертежи Таблицы Использование графитовых протекторов при анодной защите титана в соляной кислоте из "Анодная защита металлов от коррозии " Чтобы судить о возможности использования графитовых протекторов при анодной защите титана в соляной кислоте, проводили опыты с образцами из мелкозернистого пропитанного графита марки МГ и сплав титана ВТ1-0. Предварительную обработку графитовых образцов [36] проводили в 5%-ной серной кислоте в течение 15—60 ч при потенциале 1,9 В (электрод сравнения — хлорсеребряный в 1 и. соляной кислоте при комнатной температуре). Кривые заряжения снимали в 10—307о-ной H I в интервале потенциалов 0,4—1,0 В при 20—60°С. В концентрированной соляной кислоте анодная защита титана эффективна при температуре не выше 60°С [41]. Экспериментально были выбраны плотности тока заряда и разряда, соответственно, 40 и 3 А/м . После окисления в серной кислоте графитовые протекторы можно многократно использовать в соляной кислоте в режиме заряд—разряд с хорощей воспроизводимостью результатов. [c.134] Анодные поляризационные кривые титана (0,9 В/ч) в соляной кислоте подобны известным [42, 43]. Критический потенциал пассивации титана при 20 °С фкр = —0,25 В, а потенциал полной пассивации с повышением концентрации соляной кислоты сдвигается в положительном направлении. Критическая плотность тока пассивации увеличивается при этом от 0,4 до 20 A/м . При потенциале от 0,5 до 1,0 В титан пассивен плотность тока равна 0,5 10-2 в 10%-ной НС1 и 2,5 10-2 A/м в 30%-ной. Стационарный потенциал графита мало зависит от концентрации соляной кислоты и времени предварительной обработки образцов он составляет 0,64 0,05 В, что достаточно для анодной защиты титана. [c.134] Накопленный заряд при 20°С с увеличением времени обработки образца в серной кислоте от 15 до 60 ч повышается на порядок. С повышением концентрации кислоты Qhsk увеличивается, причем, тем больше, чем больше время окисления образца. При изменении температуры 10—30%-ных растворов соляной кислоты с 20 до 60 °С величина Qh3k для образцов, обработанных в течение 15—30 ч, практически не изменяется, а для обработанных в течение 40 ч и более — увеличивается, особенно в 10%-ной соляной кислоте. [c.134] Зависимости QnaK от времени предварительной обработки и концентрации соляной кислоты подобны полученным в серной кислоте и аммиачной селитре. Подобие катодных кривых заряжения в серной и соляной кислотах, а также в аммиачной селитре указывает на сходство процессов. [c.134] Для расчета продолжительности защиты протектором необходимо знать накопленный заряд, плотность защитного тока и соотношение площадей защищаемой поверхности и катодного протектора. Если титановый электрод опускать в раствор при 20°С под током, то минимальная плотность тока, необходимая для пассивации в 15%- и 25%-ных растворах соляной кислоты, равна 1 и 3 A/м соответственно. Плотность анодного тока, устанавливающаяся после полной пассивации поверхности, в 15 и 25%-ной соляной кислоте при 20 °С составляет, соответственно 0,5 10-2 10. 10-2 А/м2 [42]. При соотношении поверхностей протектора и образца титана 1 30 (Q нак — 4,8 10 Кл/м2, Хобр = 80 ч) расчетное время защиты протектором может изменяться от десятков минут до нескольких суток в зависимости от степени заиассивированности поверхности титана (табл. 7.3). При более высокой концентрации и температуре плотность тока полной пассивации увеличивается и время защиты протектором будет, соответственно, меньше. [c.135] Таким образом, предварительно окислеиный в серной кислоте графитовый электрод можно эффективно использовать в качестве катодного протектора при анодной защите титана в соляной кислоте в широком интервале концентраций и температур. [c.135] Применение катодных протекторов является перспективным направлением в разработке промышленных систем анодной защиты. Промышленное использование их еще недостаточно либо по экономическим причинам (благородные металлы), либо вследствие разрушения во время эксплуатации (оксидные протекторы). Наиболее перспективным материалом для катодных протекторов может быть углеграфит. Предложенный в нашей лаборатории метод совмещения анодной защиты с дополнительным протектором нашел практическое применение (см. гл. 8). [c.135] Вернуться к основной статье